Giải bài 6 trang 18 sách bài tập toán 8 - Chân trời sáng tạo tập 2

2024-09-14 08:53:40

Đề bài

Cho hàm số \(y = \frac{{ - x + 9}}{9}\). Phát biểu nào sau đây là đúng về đồ thị của hàm số đã cho?

A. Là một đường thẳng số hệ số b là 9.

B. Không phải là một đường thẳng.

C. Cắt trục hoành tại điểm có hoành độ là 9.

D. Đi qua điểm (19; 1).

Phương pháp giải - Xem chi tiết

+ Sử dụng kiến thức hàm số bậc nhất để tìm câu đúng: Hàm số bậc nhất là hàm số được cho bởi công thức \(y = ax + b\) với a, b là các số cho trước và \(a \ne 0\).

+ Thay giá trị của hoành độ điểm đó vào hàm số để tìm tung độ:

  • Nếu tung độ tìm được bằng tung độ của điểm đó thì điểm đó thuộc đồ thị hàm số.
  • Nếu tung độ tìm được khác tung độ của điểm đó thì điểm đó không thuộc đồ thị hàm số.

+ Điểm thuộc trục hoành có tung độ bằng 0.

Lời giải chi tiết

Ta có: \(y = \frac{{ - x + 9}}{9} = \frac{{ - x}}{9} + 1\) nên đồ thị hàm số \(y = \frac{{ - x + 9}}{9}\) là một đường thẳng có hệ số b bằng 1.

Với \(x = 19\) thay vào hàm số ta có: \(y = \frac{{ - 19 + 9}}{9} = \frac{{ - 10}}{9} \ne 1\) nên đường thẳng \(y = \frac{{ - x + 9}}{9}\) không đi qua điểm (19; 1).

Với \(x = 9\) thì \(y = \frac{{ - 9 + 9}}{0} = 0\). Do đó, đồ thị của hàm số \(y = \frac{{ - x + 9}}{9}\) cắt trục hoành tại điểm có hoành độ là 9.

Chọn C

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"