Đề bài
Cho tam giác ABC và điểm M trên cạnh AB sao cho \(\frac{{AM}}{{MB}} = \frac{3}{2}\). Kẻ MN//BC \(\left( {N \in AC} \right)\). Biết \(BC = 6cm\), tính độ dài MN.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về hệ quả định lí Thalès trong tam giác để tính: Nếu một đường thẳng cắt hai cạnh của một tam giác song song với cạnh thứ ba thì tạo ra một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh của tam giác đã cho.
Lời giải chi tiết
Vì \(\frac{{AM}}{{MB}} = \frac{3}{2}\) nên \(AM = \frac{3}{5}AB\)
Tam giác ABC có: MN//BC nên theo hệ quả của định lí Thalès ta có:
\(\frac{{MN}}{{BC}} = \frac{{AM}}{{AB}}\) nên \(\frac{{MN}}{6} = \frac{3}{5}\), suy ra: \(MN = \frac{{18}}{5}\left( {cm} \right)\)