Giải bài 4 trang 45 sách bài tập toán 8 - Chân trời sáng tạo tập 2

2024-09-14 08:53:59

Đề bài

Cho hình thang ABCD (AB//CD). Gọi M, N, P, Q lần lượt là trung điểm của AD, BC, BD, AC. Chứng minh M, N, P, Q thẳng hàng.

Phương pháp giải - Xem chi tiết

+ Sử dụng kiến thức về đường trung bình của tam giác để chứng minh: Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.

+ Sử dụng kiến thức về tính chất của đường trung bình của tam giác để chứng minh: Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

Lời giải chi tiết

Tam giác ABD có: \(MA = MD,PD = PB\) nên MP là đường trung bình của tam giác ABD. Do đó, MP//AB, mà AB//CD suy ra MP//CD.

Tam giác ADC có: \(MA = MD,QA = QC\) nên MQ là đường trung bình của tam giác ACD. Do đó, MQ//DC.

Tam giác BDC có: \(PB = PD,NB = NC\) nên PN là đường trung bình của tam giác BDC. Do đó, PN//CD.

Qua điểm M không thuộc CD có: MP//CD và MQ//CD, suy ra M, P, Q thẳng hàng.

Qua điểm P không thuộc CD có: MP//CD và NP//CD, suy ra M, P, N thẳng hàng.

Vậy M, N, P, Q thẳng hàng.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"