Đề bài
Cường gieo một con xúc xắc cân đối 540 lần. Số lần xuất hiện mặt 6 chấm trong 540 lần gieo đó có khả năng lớn nhất thuộc vào tập hợp nào dưới đây?
A. \(\left\{ {80;81;...;100} \right\}\).
B. \(\left\{ {101;102;...;120} \right\}\).
C. \(\left\{ {121;122;...;161} \right\}\).
D. \(\left\{ {20;21;...;40} \right\}\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về xác suất lí thuyết và xác suất thực nghiệm để tính: Giả sử xác suất của biến cố A là p. Khi thực hiện phép thử n lần thì số lần xuất hiện biến cố A sẽ gần bằng (nhưng không nhất thiết phải bằng) np.
Lời giải chi tiết
Vì con xúc xắc cân đối đồng chất nên xác suất để xuất hiện mặt 6 chấm là: \(\frac{1}{6}\).
Vì gieo con xúc xắc 540 lần nên số lần xuất hiện mặt 6 chấm vào khoảng: \(540.\frac{1}{6} = 90\) (lần)
Vậy số lần xuất hiện mặt 6 chấm trong 540 lần gieo đó có khả năng lớn nhất thuộc vào tập hợp là: \(\left\{ {80;81;...;100} \right\}\)
Chọn A