Giải bài 20 trang 14 sách bài tập toán 8 - Cánh diều

2024-09-14 08:55:01

Đề bài

Tìm giá trị nhỏ nhất của mỗi biểu thức sau:

a) \(A = 4{x^2} - 4x + 23\)

b) \(B = 25{x^2} + {y^2} + 10x - 4y + 2\)

Phương pháp giải - Xem chi tiết

Áp dụng các hằng đẳng thức đáng nhớ để tìm giá trị nhỏ nhất của mỗi biểu thức.

Lời giải chi tiết

a) Ta có:

\(A = 4{x^2} - 4x + 23 = \left( {4{x^2} - 4x + 1} \right) + 22 = {\left( {2x - 1} \right)^2} + 22\)

Mà \({\left( {2x - 1} \right)^2} \ge 0\) với mọi \(x\), suy ra \({\left( {2x - 1} \right)^2} + 22 \ge 22\) với mọi \(x\)

Vậy giá trị nhỏ nhất của \(A\) là \(22\) khi \(2x - 1 = 0\) hay \(x = \frac{1}{2}\).

b) Ta có:

\(\begin{array}{l}B = 25{x^2} + {y^2} + 10x - 4y + 2 = \left( {25{x^2} + 10x + 1} \right) + \left( {{y^2} - 4y + 4} \right) - 3\\ = {\left( {5x + 1} \right)^2} + {\left( {y - 2} \right)^2} - 3\end{array}\)

Mà \({\left( {5x + 1} \right)^2} \ge 0;{\left( {y - 2} \right)^2} \ge 0\) với mọi \(x\) và \(y\), suy ra \({\left( {5x + 1} \right)^2} + {\left( {y - 2} \right)^2} - 3 \ge  - 3\) với mọi \(x\) và \(y\).

Vậy giá trị nhỏ nhất của \(B\) là -3 khi \(5x + 1 = 0\) và \(y - 2 = 0\) hay \(x =  - \frac{1}{5}\) và \(y = 2\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"