Giải bài 25 trang 18 sách bài tập toán 8 - Cánh diều

2024-09-14 08:55:02

Đề bài

Chứng minh biểu thức \(B = {x^5} - 15{x^2} - x + 5\) chia hết cho 5 với mọi số nguyên \(x\)

Phương pháp giải - Xem chi tiết

Áp dụng các phương pháp phân tích đa thức thành nhân tử bằng cách nhóm số hạng và đặt nhân tử chung

Lời giải chi tiết

Trước hết, ta chứng minh \({x^5} - x \vdots 5\)

Ta có: \({x^5} - x = x\left( {{x^4} - 1} \right) = x\left( {{x^2} - 1} \right)\left( {{x^2} + 1} \right) = x\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right)\)

Nếu \(x = 5k\) thì \(x \vdots 5\)

Khi đó \(x\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right) \vdots 5\) hay \({x^5} - x \vdots 5\)

Nếu \(x = 5k + 1\) thì \(x - 1 = 5k \vdots 5\)

Khi đó \(x\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right) \vdots 5\) hay \({x^2} - x \vdots 5\)

Nếu \(x = 5k + 2\) thì \({x^2} + 1 = {\left( {5k + 2} \right)^2} + 1 = 25{k^2} + 20k + 5 \vdots 5\)

Khi đó \(x\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right) \vdots 5\) hay \({x^2} - x \vdots 5\)

Nếu \(x = 5k + 3\) thì \({x^2} + 1 = {\left( {5k + 3} \right)^2} + 1 = 25{k^2} + 30k + 10 \vdots 5\)

Khi đó \(x\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right) \vdots 5\) hay \({x^2} - x \vdots 5\)

Nếu \(x = 5k + 4\) thì \(x + 1 = 5k + 5 \vdots 5\)

Khi đó \(x\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right) \vdots 5\) hay \({x^2} - x \vdots 5\)

Do đó \({x^5} - x \vdots 5\) với mọi số nguyên \(x\)

Ta có: \({x^5} - x \vdots 5;15{x^2} \vdots 5;5 \vdots 5\) nên \({x^5} - 15{x^2} - x + 5 \vdots 5\) với mọi số nguyên\(x\).

Vậy \(B\) chia hết cho 5 với mọi số nguyên \(x\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"