Đề bài
Chứng tỏ giá trị của biểu thức sau không phụ thuộc vào giá trị của biến (với \(a\) là một số):
a) \(\frac{{{x^2} - {y^2}}}{{\left( {x + y} \right)\left( {ax - ay} \right)}}\left( {a \ne 0} \right)\)
b) \(\frac{{{{\left( {x + a} \right)}^2} - {x^2}}}{{2x + a}}\)
Phương pháp giải - Xem chi tiết
Sử dụng phương pháp rút gọn phân thức để chứng minh.
Lời giải chi tiết
a) Ta có: \(\frac{{{x^2} - {y^2}}}{{\left( {x + y} \right)\left( {ax - ay} \right)}} = \frac{{\left( {x - y} \right)\left( {x + y} \right)}}{{\left( {x + y} \right).a\left( {x - y} \right)}} = \frac{1}{a}\)
Vậy biểu thức đã cho không phụ thuộc vào giá trị của biến.
b) Ta có: \(\frac{{{{\left( {x + a} \right)}^2} - {x^2}}}{{2x + a}} = \frac{{\left( {x + a - x} \right)\left( {x + a + x} \right)}}{{2x + a}} = \frac{{a\left( {2x + a} \right)}}{{2x + a}} = a\)
Vậy biểu thức đã cho không phụ thuộc vào giá trị của biến.