Giải bài 4 trang 33 sách bài tập toán 8 - Cánh diều

2024-09-14 08:55:07

Đề bài

Rút gọn mỗi phân thức sau:

a) \(\frac{{25{x^2}{y^3}}}{{35{x^3}{y^2}}}\)

b) \(\frac{{x - y}}{{y - x}}\)

c) \(\frac{{{{\left( { - x} \right)}^5}{y^2}}}{{{x^2}{{\left( { - y} \right)}^3}}}\)

d) \(\frac{{{x^2} - 2x}}{{{x^3} - 4{x^2} + 4x}}\)

Phương pháp giải - Xem chi tiết

Muốn rút gọn một phân thức ta có thể làm như sau:

Bước 1: phân tích tử và mẫu thành nhân tử (nếu cần)

Bước 2: tìm nhân tử chung của tử và mẫu rồi chia cả tử và mẫu cho nhân tử chung.

Lời giải chi tiết

a) Điều kiện xác định của phân thức là \(x \ne 0;y \ne 0\)

Ta có: \(\frac{{25{x^2}{y^3}}}{{35{x^3}{y^2}}} = \frac{{5.5{x^2}{y^3}}}{{5.7{x^3}{x^2}}} = \frac{{5y}}{{7x}}\)

b) Điều kiện xác định của phân thức là \(y - x \ne 0\)

Ta có: \(\frac{{x - y}}{{y - x}} = \frac{{ - \left( {y - x} \right)}}{{y - x}} =  - 1\)

c) Điều kiện xác định của phân thức là \(x \ne 0;y \ne 0\)

Ta có: \(\frac{{{{\left( { - x} \right)}^5}{y^2}}}{{{x^2}{{\left( { - y} \right)}^3}}} = \frac{{\left( { - 1} \right).{x^5}{y^2}}}{{\left( { - 1} \right).{x^2}{y^3}}} = \frac{{{x^3}}}{y}\)

d) Điều kiện xác định của phân thức là \({x^3} - 4{x^2} + 4x \ne 0\)

Ta có: \(\frac{{{x^2} - 2x}}{{{x^3} - 4{x^2} + 4x}} = \frac{{x\left( {x - 2} \right)}}{{x\left( {{x^2} - 4x + 4} \right)}} = \frac{{x\left( {x - 2} \right)}}{{x{{\left( {x - 2} \right)}^2}}} = \frac{1}{{x - 2}}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"