Giải bài 15 trang 39 sách bài tập toán 8 - Cánh diều

2024-09-14 08:55:10

Đề bài

Thực hiện phép tính:

a) \(\frac{1}{{{x^2} - x + 1}}:\frac{{x + 1}}{{x - 1}}\)

b) \(\frac{{x + y}}{{2x - y}}:\frac{1}{{x - y}}\)

c) \(\frac{{{x^3}y + x{y^3}}}{{{x^4}y}}:\left( {{x^2} + {y^2}} \right)\)

d) \(\frac{{{x^3} + 8}}{{{x^2} - 2x + 1}}:\frac{{{x^2} + 3x + 2}}{{1 - {x^2}}}\)

Phương pháp giải - Xem chi tiết

Sử dụng các hằng đẳng thức và phương pháp thực hiện phép chia và phép nhân phân thức đại số để thực hiện phép tính.

Lời giải chi tiết

a) \(\frac{1}{{{x^2} - x + 1}}:\frac{{x + 1}}{{x - 1}} = \frac{1}{{{x^2} - x + 1}}.\frac{{x - 1}}{{x + 1}} = \frac{{x - 1}}{{{x^3} + 1}}\)

b) \(\frac{{x + y}}{{2x - y}}:\frac{1}{{x - y}} = \frac{{x + y}}{{2x - y}}.\frac{{x - y}}{1} = \frac{{{x^2} - {y^2}}}{{2x - y}}\)

c) \(\frac{{{x^3}y + x{y^3}}}{{{x^4}y}}:\left( {{x^2} + {y^2}} \right) = \frac{{xy\left( {{x^2} + {y^2}} \right)}}{{{x^4}y}}.\frac{1}{{{x^2} + {y^2}}} = \frac{1}{{{x^3}}}\)

d) \(\frac{{{x^3} + 8}}{{{x^2} - 2x + 1}}:\frac{{{x^2} + 3x + 2}}{{1 - {x^2}}} = \frac{{\left( {x + 2} \right)\left( {{x^2} - 2x + {y^2}} \right)}}{{{{\left( {x - 1} \right)}^2}}}.\frac{{ - \left( {x - 1} \right)\left( {x + 1} \right)}}{{\left( {x + 2} \right)\left( {x + 1} \right)}} =  - \frac{{{x^2} - 2x + 4}}{{x - 1}}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"