Đề bài
Rút gọn rồi tính giá trị của biểu thức:
a) \(A = \left( {\frac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}} - 1} \right).\frac{{x - y}}{{2y}}\) tại \(x = 5;y = 7\)
b) \(B = \frac{{2x + y}}{{2{x^2} - xy}} + \frac{{8y}}{{{y^2} - 4{x^2}}} + \frac{{2x - y}}{{2{x^2} + xy}}\) tại \(x = - \frac{1}{2};y = \frac{3}{2}\)
c) \(C = \left( {\frac{{{x^2}}}{y} - \frac{{{y^2}}}{x}} \right)\left( {\frac{{x + y}}{{{x^2} + xy + {y^2}}} + \frac{1}{{x - y}}} \right) - \frac{x}{y}\) tại \(x = - 15;y = 5\)
Phương pháp giải - Xem chi tiết
Áp dụng hằng đẳng thức và phép cộng trừ nhân chia phân thức đại số để rút gọn rồi tính giá trị của biểu thức.
Lời giải chi tiết
a) Rút gọn biểu thức:
\(A = \left( {\frac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}} - 1} \right).\frac{{x - y}}{{2y}} = \left( {\frac{{{x^2} + {y^2} - {x^2} + {y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}}} \right).\frac{{x - y}}{{2y}} = \frac{{2{y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}}.\frac{{x - y}}{{2y}} = \frac{y}{{x + y}}\)
Giá trị của biểu thức \(A\) tại \(x = 5;y = 7\) là: \(\frac{7}{{5 + 7}} = \frac{7}{{12}}\).
b) Rút gọn biểu thức:
\(\begin{array}{l}B = \frac{{2x + y}}{{2{x^2} - xy}} + \frac{{8y}}{{{y^2} - 4{x^2}}} + \frac{{2x - y}}{{2{x^2} + xy}}\\ = \frac{{2x + y}}{{x\left( {2x - y} \right)}} - \frac{{8y}}{{{{\left( {2x} \right)}^2} - {y^2}}} + \frac{{2x - y}}{{x\left( {2x + y} \right)}}\\ = \frac{{\left( {2x + y} \right)\left( {2x + y} \right)}}{{x\left( {2x - y} \right)\left( {2x + y} \right)}} - \frac{{8xy}}{{x\left( {2x - y} \right)\left( {2x + y} \right)}} + \frac{{\left( {2x - y} \right)\left( {2x + y} \right)}}{{x\left( {2x + y} \right)\left( {2x - y} \right)}}\\ = \frac{{{{\left( {2x + y} \right)}^2} - 8xy + {{\left( {2x - y} \right)}^2}}}{{x\left( {2x - y} \right)\left( {2x + y} \right)}}\\ = \frac{{4{x^2} + 4xy + {y^2} - 8xy + 4{x^2} - 4xy + {y^2}}}{{x\left( {2x + y} \right)\left( {2x - y} \right)}}\\ = \frac{{8{x^2} - 8xy + 2{y^2}}}{{x\left( {2x + y} \right)\left( {2x - y} \right)}} = \frac{{2{{\left( {2x - y} \right)}^2}}}{{x\left( {2x + y} \right)\left( {2x - y} \right)}} = \frac{{2\left( {2x - y} \right)}}{{x\left( {2x + y} \right)}}\end{array}\)
Giá trị của biểu thức\(B\) tại \(x = - \frac{1}{2};y = \frac{3}{2}\) là: \(\frac{{2\left( {2. - \frac{1}{2} - \frac{3}{2}} \right)}}{{ - \frac{1}{2}\left( {2.\frac{{ - 1}}{2} + \frac{3}{2}} \right)}} = 20\)
c) Rút gọn biểu thức:
\(\begin{array}{l}C = \left( {\frac{{{x^2}}}{y} - \frac{{{y^2}}}{x}} \right)\left( {\frac{{x + y}}{{{x^2} + xy + {y^2}}} + \frac{1}{{x - y}}} \right) - \frac{x}{y}\\ = \left( {\frac{{{x^3} - {y^3}}}{{xy}}} \right)\left( {\frac{{\left( {x + y} \right)\left( {x - y} \right) + {x^2} + xy + {y^2}}}{{\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)}}} \right) - \frac{x}{y}\\ = \left( {\frac{{{x^3} - {y^3}}}{{xy}}} \right)\left( {\frac{{{x^2} - {y^2} + {x^2} + xy + {y^2}}}{{{x^3} - {y^3}}}} \right) - \frac{x}{y}\\ = \frac{{{x^3} - {y^3}}}{{xy}}.\frac{{2{x^2} + xy}}{{{x^3} - {y^3}}} - \frac{x}{y}\\ = \frac{{\left( {{x^3} - {y^3}} \right).x.\left( {2x + y} \right)}}{{xy.\left( {{x^3} - {y^3}} \right)}} - \frac{x}{y}\\ = \frac{{2x + y}}{y} - \frac{x}{y} = \frac{{x + y}}{y}\end{array}\)
Giá trị của biểu thức \(C\) tại \(x = - 15;y = 5\) là: \(\frac{{ - 15 + 5}}{5} = 2\)