Giải bài 28 trang 63 sách bài tập toán 8 - Cánh diều

2024-09-14 08:55:28

Đề bài

Tọa độ giao điểm của hai đường thẳng \({d_1}:y = \frac{{1 - 3x}}{4}\) và \({d_2}:y = - \left( {\frac{x}{3} + 1} \right)\) là:
A. \(\left( {0; - 1} \right)\)
B. \(\left( { - \frac{7}{3};2} \right)\)
C. \(\left( {0;\frac{1}{4}} \right)\)
D. \(\left( {3; - 2} \right)\)

Phương pháp giải - Xem chi tiết

Vẽ đồ thị hàm số của cả 2 đường thẳng sau đó xác định tọa độ giao điểm.

Lời giải chi tiết

Ta có: \({d_1}:y = \frac{{1 - 3x}}{4} =  - \frac{3}{4}x + \frac{1}{4}\)

\({d_2}:y =  - \left( {\frac{x}{3} + 1} \right) =  - \frac{1}{3}x - 1\)

Xét đồ thị hàm số \({d_1}:y = \frac{{ - 3}}{4}x + \frac{1}{4}\)

Chọn \(x = 0\) suy ra \(y = \frac{1}{4}\)

Chọn \(y = 0\) suy ra \(x = \frac{1}{3}\)

Vậy đồ thị hàm số  \({d_1}:y = \frac{{ - 3}}{4}x + \frac{1}{4}\) là đường thẳng đi qua hai điểm \(A\left( {0;\frac{1}{4}} \right),B\left( {\frac{1}{3};0} \right)\)

Xét đồ thị hàm số \({d_2}:y =  - \frac{1}{3}x - 1\)

Chọn \(x = 0\) suy ra \(y =  - 1\)

Chọn \(y = 0\) suy ra \(x =  - 3\)

Vậy đồ thị hàm số  \({d_2}:y =  - \frac{1}{3}x - 1\) là đường thẳng đi qua hai điểm \(C\left( {0; - 1} \right),D\left( { - 3;0} \right)\)

Vẽ trên mặt phẳng tọa độ \(Oxy\):

 

Ta xác định được giao điểm \(E\left( {3; - 2} \right)\).

→   Đáp án D.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"