Giải bài 8 trang 90 sách bài tập toán 8 - Cánh diều

2024-09-14 08:55:46

Đề bài

a)     Cho tứ giác \(ABCD\) có \(AB//CD,\widehat B = 135^\circ ,\widehat D = 70^\circ ,\widehat {ACB} = 25^\circ \) (Hình 8a). Tính số đo góc \(DAC\).

 

b)    Cho tứ giác \(GHIK\) có \(\widehat {KGH} = \widehat K = 90^\circ ,\widehat I = 65^\circ \). Trên \(HI\) lấy điểm \(E\) sao cho \(\widehat {EGH} = 25^\circ \) (Hình 8b). Tính số đo góc \(GEI\).

 

c)     Cho tứ giác \(MNPQ\) có \(PM\) là tia phân giác của góc \(NPQ,\widehat {QMN} = 110^\circ ,\widehat N = 120^\circ ,\widehat Q = 60^\circ \) (Hình 8c). Tính các số đo góc \(NPM,MPQ,QMP\).

 

Phương pháp giải - Xem chi tiết

Dựa vào tính chất tổng các góc trong một tứ giác bằng \(360^\circ \) và tính chất của tia phân giác để tính các số đo góc còn lại.

Lời giải chi tiết

a)     Trong tam giác \(ABC\), ta có: \(\widehat {BAC} = 180^\circ  - \left( {\widehat B + \widehat {BCA}} \right) = 20^\circ \)

Do \(AB//CD\) nên \(\widehat {ACD} = \widehat {BAC} = 20^\circ \) (hai góc so le trong)

Trong tam giác \(ACD\), ta có: \(\widehat {DAC} = 180^\circ  - \left( {\widehat {ACD} + \widehat D} \right) = 90^\circ \)

b)    Trong tứ giác \(GHIK\), ta có: \(\widehat H = 360^\circ  - \left( {\widehat {KGH} + \widehat I + \widehat K} \right) = 115^\circ \)

Trong tam giác \(GHE\), ta có: \(\widehat {HEG} = 180^\circ  - \left( {\widehat {EGH} + \widehat H} \right) = 40^\circ \)

Vậy \(\widehat {GEI} = 180^\circ  - \widehat {HEG} = 140^\circ \)

c)     Trong tứ giác \(MNPQ\), ta có: \(\widehat {NPQ} = 360^\circ  - \left( {\widehat {QMN} + \widehat N + \widehat Q} \right) = 70^\circ \)

Do \(PM\) là tia phân giác của góc \(NPQ\) nên \(\widehat {NPM} = \widehat {MPQ} = \frac{{\widehat {NPQ}}}{2} = 35^\circ \)

Trong tam giác \(MPQ\), ta có: \(\widehat {QMP} = 180^\circ  - \left( {\widehat {MPQ} + \widehat Q} \right) = 85^\circ \)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"