Giải bài 11 trang 92 sách bài tập toán 8 - Cánh diều

2024-09-14 08:55:50

Đề bài

Cho tứ giác \(ABCD\) có \(\widehat C = \widehat D\) và \(AD = BC\). Chứng minh tứ giác \(ABCD\) là hình thang cân.

Phương pháp giải - Xem chi tiết

Dựa vào tính chất của hình thang cân:

Trong một hình thang cân

-         Hai cạnh bên bằng nhau

-         Hai đường chéo bằng nhau.

Lời giải chi tiết

Gọi \(I\) là giao điểm của \(AD\) và \(BC\)

Do \(\widehat C = \widehat D\) nên tam giác \(ICD\) cân tại \(I\). Suy ra \(ID = IC\)

Mà \(AD = BC\), suy ra \(IA = IB\). Do đó, tam giác \(IAB\) cân tại \(I\).

Vì hai tam giác \(IAB\) và \(ICD\) đều cân tại \(I\) nên

\(\widehat {IAB} = \widehat D\) (cùng bằng \(\frac{{180^\circ  - \widehat I}}{2}\))

Mà \(\widehat {IAB}\) và \(\widehat D\) nằm ở vị trí đồng vị, suy ra \(AB//CD\)

Tứ giác \(ABCD\) có \(AB//CD\) và \(\widehat C = \widehat D\) nên \(ABCD\) là hình thang cân.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"