Đề bài
Cho tam giác \(ABC\) có \(AB = AC = 3cm\). Từ điểm \(M\) thuộc cạnh \(BC\), kẻ \(MD\) song song với \(AC\) và \(ME\) song song với \(AB\) (điểm \(D,E\) lần lượt thuộc cạnh \(AB,AC\)). Tính chu vi của tứ giác \(ADME\).
Phương pháp giải - Xem chi tiết
Dựa vào dấu hiệu nhận biết của hình bình hành:
- Tứ giác có hai cặp cạnh đối bằng nhau là hình bình hành
- Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành
- Tứ giác có hai cặp góc đối bằng nhau là hình bình hành
- Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành.
Lời giải chi tiết
Do \(AB = AC\) nên tam giác \(ABC\) cân tại \(A\). Suy ra \(\widehat {ABC} = \widehat {ACB}\).
Mà \(\widehat {ABC} = \widehat {EMC}\) (hai góc đồng vị), suy ra \(\widehat {ACB} = \widehat {EMC}\).
Do đó, tam giác \(ECM\) cân tại \(E\). Suy ra \(ME = CE\).
Tứ giác \(ADME\) có \(MD//AE,ME//AD\) nên \(ADME\) là hình bình hành. Vậy chu vi của hình bình hành \(ADME\) là:
\(2\left( {AE + ME} \right) = 2\left( {AE + CE} \right) = 2AC = 6cm\)