Giải bài 28 trang 70 sách bài tập toán 8 – Cánh diều

2024-09-14 08:56:56

Đề bài

Quan sát Hình 28 biết \(\widehat{AMN}=\widehat{ABC},\widehat{BAC}=\widehat{BML}\).

a)      Chứng minh: \(\Delta AMN\backsim \Delta MBL\).

b)     Xác định vị trí của điểm \(M\) trên cạnh \(AB\) để chu vi tam giác \(AMN\) bằng \(\frac{2}{3}\) chu vi tam giác \(ABC\).

 

Phương pháp giải - Xem chi tiết

Dựa vào định nghĩa của tam giác đồng dạng:

Tam giác \(A'B'C'\) gọi là đồng dạng với tam giác \(ABC\) nếu:

\(\widehat{A'}=\widehat{A},\widehat{B'}=\widehat{B},\widehat{C'}=\widehat{C}\) ; \(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{A'C'}{AC}\).

Kí hiệu là \(\Delta A'B'C'\backsim \Delta ABC\).

Tỉ số các cạnh tương ứng \(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}=k\) gọi là tỉ số đồng dạng.

Và công thức tính chu vi tam giác.

Lời giải chi tiết

a)      Vì \(\widehat{AMN}=\widehat{ABC}\) nên \(MN//BC\). Do đó \(\Delta AMN\backsim \Delta ABC\) (1)

Vì \(\widehat{BAC}=\widehat{BML}\) nên \(ML//AC\). Do đó \(\Delta MBL\backsim \Delta ABC\) (2)

Từ (1) và (2) ta có \(\Delta AMN\backsim \Delta MBL\),

b)     Giả sử \(\Delta AMN\backsim \Delta ABC\) với tỉ số đồng dạng \(k\), ta có:

\(\frac{AM}{AB}=\frac{AN}{AC}=\frac{MN}{BC}=k\).

→    \(\frac{AM}{AB}=\frac{AN}{AC}=\frac{MN}{BC}=\frac{AM+AN+MN}{AB+AC+BC}=k\) hay (Chu vi tam giác \(AMN\)) : (Chu vi tam giác \(ABC\)) \(=k\).

Do đó để chu vi tam giác \(AMN\) bằng \(\frac{2}{3}\) chu vi tam giác \(ABC\) thì \(AM=\frac{2}{3}AB\).

Ngược lại, dễ thấy nếu \(AM=\frac{2}{3}AB\) thì chu vi tam giác \(AMN\) bằng \(\frac{2}{3}\) tam giác \(ABC\).

Vậy vị trí của điểm \(M\) trên cạnh \(AB\) để chu vi tam giác \(AMN\) bằng chu vi tam giác \(ABC\) là \(AM=\frac{2}{3}AB\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"