Giải bài 41 trang 75 sách bài tập toán 8 – Cánh diều

2024-09-14 08:57:00

Đề bài

Hình thang ABCD ở Hình 39 có AB//CD,AB<CD,ABD^=90. Hai đường chéo ACBD cắt nhau tại G. Điểm E nằm trên đường vuông góc với AC tại C thỏa mãn CE=AG và đoạn thẳng GE không cắt đường thẳng CD. Điểm F nằm trên đoạn thẳng DCDF=GB. Chứng minh:

a)      ΔFGDΔECG;

b)     ΔGDCΔGFE;

c)      GFE^=90.

Phương pháp giải - Xem chi tiết

Áp dụng trường hợp đồng dạng thứ hai của tam giác: cạnh – góc – cạnh

Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai góc tạo bởi các cặp cạnh đó bằng nhau thì hai tam giác đó đồng dạng.

Lời giải chi tiết

a)      Do AB//CD nên BGAG=GDGC.

Mặt khác AG=CE,BG=DF nên DFCE=GDGC.

GDF^=GCE^ nên ΔFDGΔECG.

b)     Vì ΔFDGΔECG nên DGF^=CGE^DGGF=GCGE.

DGF^=CGE^=>DGF^+FGC^=+FGC^.

Hay DGC^=FGE^.

Từ đó, ta có ΔGDCΔGFEDGGF=GCGEDGC^=FGE^.

c)      Vì ΔGDCΔGFE nên GFE^=GDC^=90.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"