Giải bài 73 trang 85 sách bài tập toán 8 – Cánh diều

2024-09-14 08:57:09

Đề bài

Cho tam giác \(ABC\) vuông tại \(A\), có đường phân giác \(AD\). Vẽ hình vuông \(MNPQ\) ở đó \(M\) thuộc cạnh \(AB,N\) thuộc cạnh \(AC,P\) và \(Q\) thuộc cạnh \(BC\). Gọi \(E\) và \(F\) lần lượt là giao điểm của \(BN\) và \(MQ\); \(CM\) và \(NP\) (Hình 60). Chứng minh:

 

a)      \(DE\) song song với \(AC\);

b)     \(DE=DF\).

Phương pháp giải - Xem chi tiết

Tam giác \(A'B'C'\) gọi là đồng dạng với tam giác \(ABC\) nếu:

\(\widehat{A'}=\widehat{A},\widehat{B'}=\widehat{B},\widehat{C'}=\widehat{C}\) ; \(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{A'C'}{AC}\).

Kí hiệu là \(\Delta A'B'C'\backsim \Delta ABC\).

Tỉ số các cạnh tương ứng \(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}=k\) gọi là tỉ số đồng dạng.

Lời giải chi tiết

a)      Ta có \(\frac{BE}{EN}=\frac{BQ}{QP}=\frac{BQ}{MQ}=\frac{AB}{AC}=\frac{BD}{DC}\) suy ra \(DE//NC\) hay \(DE//AC\).

b)     Do \(DE//AC\) nên \(\frac{DE}{CN}=\frac{BD}{BC}\) hay \(DE=\frac{BD}{BC}.CN\)

Tương tự: \(DF=\frac{CD}{BC}.BM\). Suy ra \(\frac{DE}{DF}=\frac{BD}{CD}.\frac{CN}{BM}\).

Mặt khác, \(\frac{BD}{CD}=\frac{AB}{AC}\) và \(\frac{CN}{BM}=\frac{AC}{AB}\) nên \(\frac{DE}{DF}=1\) hay \(DE=DF\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"