Đề bài
Cho tam giác \(ABC\) vuông tại \(A\), có đường phân giác \(AD\). Vẽ hình vuông \(MNPQ\) ở đó \(M\) thuộc cạnh \(AB,N\) thuộc cạnh \(AC,P\) và \(Q\) thuộc cạnh \(BC\). Gọi \(E\) và \(F\) lần lượt là giao điểm của \(BN\) và \(MQ\); \(CM\) và \(NP\) (Hình 60). Chứng minh:
a) \(DE\) song song với \(AC\);
b) \(DE=DF\).
Phương pháp giải - Xem chi tiết
Tam giác \(A'B'C'\) gọi là đồng dạng với tam giác \(ABC\) nếu:
\(\widehat{A'}=\widehat{A},\widehat{B'}=\widehat{B},\widehat{C'}=\widehat{C}\) ; \(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{A'C'}{AC}\).
Kí hiệu là \(\Delta A'B'C'\backsim \Delta ABC\).
Tỉ số các cạnh tương ứng \(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}=k\) gọi là tỉ số đồng dạng.
Lời giải chi tiết
a) Ta có \(\frac{BE}{EN}=\frac{BQ}{QP}=\frac{BQ}{MQ}=\frac{AB}{AC}=\frac{BD}{DC}\) suy ra \(DE//NC\) hay \(DE//AC\).
b) Do \(DE//AC\) nên \(\frac{DE}{CN}=\frac{BD}{BC}\) hay \(DE=\frac{BD}{BC}.CN\)
Tương tự: \(DF=\frac{CD}{BC}.BM\). Suy ra \(\frac{DE}{DF}=\frac{BD}{CD}.\frac{CN}{BM}\).
Mặt khác, \(\frac{BD}{CD}=\frac{AB}{AC}\) và \(\frac{CN}{BM}=\frac{AC}{AB}\) nên \(\frac{DE}{DF}=1\) hay \(DE=DF\).