Bài 8 trang 6 SBT toán 8 tập 1

2024-09-14 09:03:24

Chứng minh:

LG a

\(\) \(\left( {x - 1} \right)\left( {{x^2} + x + 1} \right) = {x^3} - 1\)

Phương pháp giải:

Sử dụng nhân đa thức với đa thức: Muốn nhân đa thức với đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích lại với nhau:

Với \(A, B, C, D\) là các đơn thức: \((A+B)(C+D)\)\(=AC+AD+BC+BD\) 

Lời giải chi tiết:

\(\) Biến đổi vế trái: \(\left( {x - 1} \right)\left( {{x^2} + x + 1} \right) \)

\( = x.{x^2} + x.x + x.1 - 1.{x^2} - 1.x - 1.1\)

\(= {x^3} + {x^2} + x - {x^2} - x - 1 = {x^3} - 1\)

Vế trái bằng vế phải vậy đẳng thức được chứng minh


LG b

\(\) \(\left( {{x^3} + {x^2}y + x{y^2} + {y^3}} \right)\left( {x - y} \right) \)\(= {x^4} - {y^4}\) 

Phương pháp giải:

Sử dụng nhân đa thức với đa thức: Muốn nhân đa thức với đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích lại với nhau:

Với \(A, B, C, D\) là các đơn thức: \((A+B)(C+D)\)\(=AC+AD+BC+BD\) 

Lời giải chi tiết:

\(\) Biến đổi vế trái: \(\left( {{x^3} + {x^2}y + x{y^2} + {y^3}} \right)\left( {x - y} \right) \)

\( = {x^3}.x + {x^2}y.x + x{y^2}.x + {y^3}.x + {x^3}.\left( { - y} \right)\)\( + {x^2}y.\left( { - y} \right) + x{y^2}.\left( { - y} \right) + {y^3}.\left( { - y} \right)\)

\(= {x^4} + {x^3}y + {x^2}{y^2} + x{y^3} - {x^3}y \)\(-{x^2}{y^2} - x{y^3} - {y^4} \)\(= {x^4} - {y^4}\)

Vế trái bằng vế phải vậy đẳng thức được chứng minh.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"