Bài 30 trang 9 SBT toán 8 tập 1

2024-09-14 09:03:29

Tìm \(x\) , biết

LG a

\(\) \({x^3} - 0,25x = 0\)

Phương pháp giải:

+) Phân tích đa thức thành nhân tử: Sử dụng phương pháp đặt nhân tử chung và sử dụng hằng đẳng thức: \(A^2-B^2=(A-B)(A+B)\) 

+) Từ đó biến đổi về dạng: \(A.B=0\) \(\Leftrightarrow \left[ \begin{array}{l}A = 0\\B = 0\end{array} \right.\)

Lời giải chi tiết:

\(\) \({x^3} - 0,25x = 0\)\( \Leftrightarrow x\left( {{x^2} - 0,25} \right) = 0\)\( \Leftrightarrow x\left( {{x^2} - 0,{5^2}} \right) = 0\)

\(\Leftrightarrow x\left( {x + 0,5} \right)\left( {x - 0,5} \right) = 0 \)

Suy ra \( x = 0 \) hoặc \(x + 0,5 = 0\) hoặc \(x - 0,5 = 0\)

+) \(x + 0,5 = 0 \Leftrightarrow x =  - 0,5\)

+) \(x - 0,5 = 0 \Leftrightarrow x = 0,5\)

Vậy \(x = 0;x =  - 0,5;x = 0,5\)


LG b

\(\) \({x^2} - 10x =  - 25\)

Phương pháp giải:

+) Phân tích đa thức thành nhân tử: Sử dụng hằng đẳng thức: \( (A-B)^2=A^2-2AB+B^2\) 

+) Từ đó biến đổi về dạng: \(A^2=0\) \(\Leftrightarrow A=0\)

Lời giải chi tiết:

\(\) \({x^2} - 10x =  - 25\)

\( \Leftrightarrow {x^2} - 2.x.5 + {5^2} = 0 \)

\(\Leftrightarrow {\left( {x - 5} \right)^2} = 0\)

\( \Leftrightarrow x - 5 = 0 \Leftrightarrow x = 5\)

Vậy \(x=5\) 

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"