Phân tích các đa thức sau thành nhân tử:
LG a
\(\) \(45 + {x^3} - 5{x^2} - 9x\)
Phương pháp giải:
+) Sử dụng phương pháp nhóm các hạng tử một cách thích hợp để xuất hiện nhân tử chung và sử dụng hằng đẳng thức: \(A^2-B^2=(A-B)(A+B)\)
Giải chi tiết:
\(\) \(45 + {x^3} - 5{x^2} - 9x\)
\( = \left( {{x^3} - 5{x^2}} \right) - \left( {9x - 45} \right)\)
\( = {x^2}\left( {x - 5} \right) - 9\left( {x - 5} \right)\)
\( = \left( {x - 5} \right)\left( {{x^2} - 9} \right) \)
\(= \left( {x - 5} \right)\left( {x - 3} \right)\left( {x + 3} \right)\)
LG b
\(\) \({x^4} - 2{x^3} - 2{x^2} - 2x - 3\)
Phương pháp giải:
+) Sử dụng phương pháp nhóm các hạng tử một cách thích hợp để xuất hiện nhân tử chung và sử dụng hằng đẳng thức: \(A^2-B^2=(A-B)(A+B)\)
Giải chi tiết:
\(\) \({x^4} - 2{x^3} - 2{x^2} - 2x - 3\)
\( = \left( {{x^4} - 1} \right) - \left( {2{x^3} + 2{x^2}} \right) - \left( {2x + 2} \right)\)
\(= \left( {{x^2} + 1} \right)\left( {{x^2} - 1} \right) - 2{x^2}\left( {x + 1} \right)\)\( - 2\left( {x + 1} \right) \)
\(= \left( {{x^2} + 1} \right)\left( {x - 1} \right)\left( {x + 1} \right) - 2{x^2}\left( {x + 1} \right)\)\( - 2\left( {x + 1} \right)\)
\(= \left( {x + 1} \right)\left[ {\left( {{x^2} + 1} \right)\left( {x - 1} \right) - 2{x^2} - 2} \right] \)
\( = \left( {x + 1} \right)\left[ {\left( {{x^2} + 1} \right)\left( {x - 1} \right) - 2\left( {{x^2} + 1} \right)} \right]\)
\(= \left( {x + 1} \right)\left( {{x^2} + 1} \right)\left( {x - 1 - 2} \right) \)
\( = \left( {x + 1} \right)\left( {{x^2} + 1} \right)\left( {x - 3} \right) \)
[hoctot.me - Trợ lý học tập AI]