Bài 55 trang 14 SBT toán 8 tập 1

2024-09-14 09:03:46

Tính nhanh giá trị của mỗi biểu thức sau:

LG a

\(\) \(1,{6^2} + 4.0,8.3,4 + 3,{4^2}\)

Phương pháp giải:

+) Sử dụng hằng đẳng thức để rút gọn biểu thức:

\( (A+B)^2=A^2+2AB+B^2\)

Lời giải chi tiết:

\(\) \(1,{6^2} + 4.0,8.3,4 + 3,{4^2}\) \(\) \(=1,{6^2} + 2.2.0,8.3,4 + 3,{4^2}\)\( = 1,{6^2} + 2.1,6.3,4 + 3,{4^2}\)\( = {\left( {1,6 + 3,4} \right)^2} = {5^2} = 25\)


LG b

\(\) \({3^4}{.5^4} - \left( {{{15}^2} + 1} \right)\left( {{{15}^2} - 1} \right)\)

Phương pháp giải:

+) Sử dụng hằng đẳng thức để rút gọn biểu thức:

\(A^2-B^2=(A-B)(A+B)\)

Lời giải chi tiết:

\(\) \({3^4}{.5^4} - \left( {{{15}^2} + 1} \right)\left( {{{15}^2} - 1} \right)\) \( = {\left( {3.5} \right)^4} - [\left( {{15}^2}  \right)^2-1^2]\)\( = 15^4- \left( {{{15}^4} - 1} \right)\)\( = {15^4} - {15^4} + 1 = 1\) 


LG c

\(\) \({x^4} - 12{x^3} + 12{x^2} - 12x + 111\) tại \(x = 11\)

Phương pháp giải:

Với \(x=11\) ta có \(12=x+1\). Từ đó thay vào biểu thức đã cho để rút gọn.

Lời giải chi tiết:

\(\) \({x^4} - 12{x^3} + 12{x^2} - 12x + 111\). Tại \(x = 11\)

Ta có: \(x = 11 \Rightarrow 12 = x + 1\)  thay vào biểu thức ta được:

\({x^4} - 12{x^3} + 12{x^2} - 12x + 111\) \( = {x^4} - \left( {x + 1} \right){x^3} + \left( {x + 1} \right){x^2}\)\( - \left( {x + 1} \right)x + 111\)

\( = {x^4} - {x^4} - {x^3} + {x^3} + {x^2} - {x^2}\)\( - x + 111\)\( =  - x + 111\)

Thay \(x = 11\) vào biểu thức ta có: \( - x + 111 =  - 11 + 111 = 100.\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"