Bài 3 trang 24 SBT toán 8 tập 1

2024-09-14 09:03:47

Đề bài

Bạn Lan viết các đẳng thức sau và đố các bạn trong nhóm học tập tìm ra chỗ sai. Em hãy sửa chỗ sai cho đúng.

a. \(\displaystyle {{5x + 3} \over {x - 2}} = {{5{x^2} + 13x + 6} \over {{x^2} - 4}}\)

b. \(\displaystyle {{x + 1} \over {x + 3}} = {{{x^2} + 3} \over {{x^2} + 6x + 9}}\)

c. \(\displaystyle {{{x^2} - 2} \over {{x^2} - 1}} = {{x + 2} \over {x + 1}}\)

d. \(\displaystyle {{2{x^2} - 5x + 3} \over {{x^2} + 3x - 4}} = {{2{x^2} - x - 3} \over {{x^2} + 5x + 4}}\)

Phương pháp giải - Xem chi tiết

Hai phân thức \( \dfrac{A}{B}\) và \( \dfrac{C}{D}\) gọi là bằng nhau nếu \(AD = BC\).

Lời giải chi tiết

a. Xét: \(\left( {5x + 3} \right)\left( {{x^2} - 4} \right) \)\(\,= 5{x^3} - 20x + 3{x^2} - 12\)  (1)

Xét: \(\left( {x - 2} \right)\left( {5{x^2} + 13x + 6} \right)\)\(\, = 5{x^3} + 13{x^2} + 6x - 10{x^2} - 26x-12 \)\(\,= 5{x^3} - 20x + 3{x^2} - 12\) (2)

Từ (1) và (2) suy ra đẳng thức đúng.

b. Xét: \(\left( {x + 1} \right)\left( {{x^2} + 6x + 9} \right)\)\(\, = {x^3} + 6{x^2} + 9x + {x^2} + 6x + 9 \)\(\,= {x^3} + 7{x^2} + 15x + 9\)

Xét: \(\left( {x + 3} \right)\left( {{x^2} + 3} \right) \)\(\,= {x^3} + 3x + 3{x^2} + 9\)

Suy ra: \( \left( {x + 1} \right)\left( {{x^2} + 6x + 9} \right) \ne \)\(\,\left( {x + 3} \right)\left( {{x^2} + 3} \right)\)

Đẳng thức sai

\(\displaystyle {{x + 1} \over {x + 3}} \ne {{{x^2} + 3} \over {{x^2} + 6x + 9}}\).

Ta có: \( (x+1).(x^2+6x +9)\)

\(=(x+1).(x+3)^2\)

\(=(x+3).(x+1).(x+3)\)

\(=(x+3)(x^2+4x+3)\)

Ta có thể sửa lại là: \(\displaystyle {{x + 1} \over {x + 3}} = {{{x^2} + 4x + 3} \over {{x^2} + 6x + 9}}\)

c. Xét: \(\left( {{x^2} - 2} \right)\left( {x + 1} \right) \)\(\,= {x^3} + {x^2} - 2x - 2\)

Xét: \(\left( {{x^2} - 1} \right)\left( {x + 2} \right) \)\(\,= {x^3} + 2{x^2} - x - 2\)

Suy ra \(\left( {{x^2} - 2} \right)\left( {x + 1} \right) \ne \left( {{x^2} - 1} \right)\left( {x + 2} \right)\)

Đẳng thức sai

\(\displaystyle {{{x^2} - 2} \over {{x^2} - 1}} \ne {{x + 2} \over {x + 1}}\).

Ta có: \((x^2 -1).(x+2)\)

\(=(x+1)(x-1).(x+2)\)

\(=(x+1).(x+x-2)\)

Ta có thể sửa lại là: \(\displaystyle {{{x^2} + x - 2} \over {{x^2} - 1}} = {{x + 2} \over {x + 1}}\)

d. Xét: \(\left( {2{x^2} - 5x + 3} \right)\left( {{x^2} + 5x + 4} \right)\)

\( = 2{x^4} + 10{x^3} + 8{x^2} - 5{x^3} \)\(\,- 25{x^2} - 20x + 3{x^2} + 15x + 12\)

\( = 2{x^4} + 5{x^3} - 14{x^2} - 5x + 12 \)

Xét: \(\left( {{x^2} + 3x - 4} \right)\left( {2{x^2} - x - 3} \right) \)

\(= 2{x^4} - {x^3} - 3{x^2} + 6{x^3} - 3{x^2} - 9x \)\(\,- 8{x^2} + 4x + 12  \)

\(  = 2{x^4} + 5{x^3} - 14{x^2} - 5x + 12  \)

Suy ra \( \left( {2{x^2} - 5x + 3} \right)\left( {{x^2} + 5x + 4} \right)\)\(\, = \left( {{x^2} + 3x - 4} \right)\left( {2{x^2} - x - 3} \right) \)

Nên đẳng thức đã cho đúng.

Ta có thể có nhiều đẳng thức sửa lại, chỉ cần thỏa mãn A.D=B.C thì \(\frac{A}{B}=\frac{C}{D}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"