Bài 5 trang 25 SBT toán 8 tập 1

2024-09-14 09:03:49

Biến đổi mỗi phân thức sau thành một phân thức bằng nó và có tử thức là đa thức \(A\) cho trước :

LG a

\(\displaystyle {{4x + 3} \over {{x^2} - 5}},A = 12{x^2} + 9x\)

Phương pháp giải:

- Nếu nhân cả tử và mẫu của một phân thức với cùng một đa thức khác đa thức không thì được một phân thức bằng phân thức đã cho.

\( \dfrac{A}{B}= \dfrac{A.M}{B.M}\) ( \(M\) là một đa thức khác đa thức \(0\))

- Nếu chia cả tử và mẫu của một đa thức cho một nhân tử chung của chúng thì được một phân thức bằng phân thức đã cho.

\( \dfrac{A}{B}= \dfrac{A : N}{B : N}\) ( \(N\) là một nhân tử chung)

Lời giải chi tiết:

\(\displaystyle A  = 12{x^2} + 9x = 3x\left( {4x + 3} \right)\)

\(\displaystyle  \Rightarrow {{4x + 3} \over {{x^2} - 5}} = {{\left( {4x + 3} \right).3x} \over {\left( {{x^2} - 5} \right).3x}} \)\(\displaystyle \,= {{12{x^2} + 9x} \over {3{x^3} - 15x}}\)


LG b

\(\displaystyle {{8{x^2} - 8x + 2} \over {\left( {4x - 2} \right)\left( {15 - x} \right)}},A = 1 - 2x\)

Phương pháp giải:

- Nếu nhân cả tử và mẫu của một phân thức với cùng một đa thức khác đa thức không thì được một phân thức bng phân thức đã cho.

\( \dfrac{A}{B}= \dfrac{A.M}{B.M}\) ( \(M\) là một đa thức khác đa thức \(0\))

- Nếu chia cả tử và mẫu của một đa thức cho một nhân tử chung của chúng thì được một phân thức bằng phân thức đã cho.

\( \dfrac{A}{B}= \dfrac{A : N}{B : N}\) ( \(N\) là một nhân tử chung)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
8{x^2} - 8x + 2\\
= 2\left( {4{x^2} - 4x + 1} \right)\\
= 2\left[ {{{\left( {2x} \right)}^2} - 2.2x.1 + {1^2}} \right]\\
= 2{\left( {2x - 1} \right)^2}
\end{array}\)

Ta được:

\(\displaystyle {{8{x^2} - 8x + 2} \over {\left( {4x - 2} \right)\left( {15 - x} \right)}} \)

\(=\dfrac{2{\left( {2x - 1} \right)^2}} {2.\left( {2x - 1} \right)\left( {15 - x} \right)}\)

\(\displaystyle = {{2x-1} \over {15-x}}\)

\(\displaystyle = {{1 - 2x} \over {x - 15}}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"