Bài 3.1 phần bài tập bổ sung trang 27 SBT toán 8 tập 1

2024-09-14 09:03:51

Rút gọn phân thức:

LG a

\(\dfrac{{{x^4} - {y^4}}}{{{y^3} - {x^3}}}\)

Phương pháp giải:

Muốn rút gọn một phân thức đại số ta làm như sau:

- Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung.

- Chia cả tử và mẫu cho nhân tử chung giống nhau.

Giải chi tiết:

\(\eqalign{
&  \;\frac{{{x^4} - {y^4}}}{{{y^3} - {x^3}}} \cr 
& = \frac{{\left( {{x^2} + {y^2}} \right)\left( {{x^2} - {y^2}} \right)}}{{\left( {y - x} \right)\left( {{y^2} + xy + {x^2}} \right)}} \cr 
& = \frac{{\left( {{x^2} + {y^2}} \right)\left( {x + y} \right)\left( {x - y} \right)}}{{\left( {y - x} \right)\left( {{y^2} + xy + {x^2}} \right)}} \cr 
& =  \frac{{\left( {{x^2} + {y^2}} \right)\left( {x + y} \right)\left( {x - y} \right)}}{-{\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)}} \cr 
& =  \frac{-{\left( {{x^2} + {y^2}} \right)\left( {x + y} \right)}}{{{x^2} + xy + {y^2}}} \cr} \)


LG b

\(\dfrac{{\left( {2x - 4} \right)\left( {x - 3} \right)}}{{\left( {x - 2} \right)\left( {3{x^2} - 27} \right)}}\)

Phương pháp giải:

Muốn rút gọn một phân thức đại số ta làm như sau:

- Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung.

- Chia cả tử và mẫu cho nhân tử chung giống nhau.

Giải chi tiết:

\(\eqalign{
& \;\frac{{\left( {2x - 4} \right)\left( {x - 3} \right)}}{{\left( {x - 2} \right)\left( {3{x^2} - 27} \right)}} \cr 
& = \frac{{2\left( {x - 2} \right)\left( {x - 3} \right)}}{{\left( {x - 2} \right).3.\left( {{x^2} - 9} \right)}} \cr 
& = \frac{{2\left( {x - 3} \right)}}{{3\left( {x + 3} \right)\left( {x - 3} \right)}} \cr 
& = \frac{2}{{3\left( {x + 3} \right)}} \cr} \)


LG c

\(\dfrac{{2{x^3} + {x^2} - 2x - 1}}{{{x^3} + 2{x^2} - x - 2}}\)

Phương pháp giải:

Muốn rút gọn một phân thức đại số ta làm như sau:

- Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung.

- Chia cả tử và mẫu cho nhân tử chung giống nhau.

Giải chi tiết:

\(\eqalign{
& \;\frac{{2{x^3} + {x^2} - 2x - 1}}{{{x^3} + 2{x^2} - x - 2}} \cr 
& = \frac{{\left( {2{x^3} - 2x} \right) + \left( {{x^2} - 1} \right)}}{{\left( {{x^3} - x} \right) + \left( {2{x^2} - 2} \right)}} \cr 
& = \frac{{2x\left( {{x^2} - 1} \right) + \left( {{x^2} - 1} \right)}}{{x\left( {{x^2} - 1} \right) + 2\left( {{x^2} - 1} \right)}} \cr 
& = \frac{{\left( {{x^2} - 1} \right)\left( {2x + 1} \right)}}{{\left( {{x^2} - 1} \right)\left( {x + 2} \right)}} \cr 
& = \frac{{2x + 1}}{{x + 2}} \cr} \)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"