Bài 11 trang 26 SBT toán 8 tập 1

2024-09-14 09:03:52

Đề bài

Cho hai phân thức \(\displaystyle {{{x^3} - {x^2} - x + 1} \over {{x^4} - 2{x^2} + 1}}\) , \(\displaystyle {{5{x^3} + 10{x^2} + 5x} \over {{x^3} + 3{x^2} + 3x + 1}}\). Theo bài tập 8, có vô số cặp phân thức có cùng mẫu thức và bằng cặp phân thức đã cho. Hãy tìm cặp phân thức như thế với mẫu thức là đa thức có bậc thấp nhất.

Phương pháp giải - Xem chi tiết

Để tìm được phân thức thỏa mãn yêu cầu của bài toán thực chất là ta thực hiện phép rút gọn phân thức đã cho về dạng tối giản.

Lời giải chi tiết

+) \(\displaystyle {{{x^3} - {x^2} - x + 1} \over {{x^4} - 2{x^2} + 1}}\)

\( \displaystyle = {{{x^2}\left( {x - 1} \right) - \left( {x - 1} \right)} \over {{{\left( {{x^2} - 1} \right)}^2}}} \)

\( = \dfrac{{\left( {x - 1} \right)\left( {{x^2} - 1} \right)}}{{{{\left[ {\left( {x + 1} \right)\left( {x - 1} \right)} \right]}^2}}}\)

\( \displaystyle = {{\left( {x - 1} \right)\left( {x +1} \right)\left( {x - 1} \right)} \over {{{\left( {x + 1} \right)}^2}{{\left( {x - 1} \right)}^2}}} \)

\(\displaystyle = \frac{{\left( {x + 1} \right){{\left( {x - 1} \right)}^2}}}{{{{\left( {x + 1} \right)}^2}{{\left( {x - 1} \right)}^2}}}= {1 \over {x + 1}}\)

+) \(\displaystyle {{5{x^3} + 10{x^2} + 5x} \over {{x^3} + 3{x^2} + 3x + 1}} \)

\(\displaystyle = {{5x\left( {{x^2} + 2x + 1} \right)} \over {{{\left( {x + 1} \right)}^3}}} \)

\(\displaystyle = {{5x{{\left( {x + 1} \right)}^2}} \over {{{\left( {x + 1} \right)}^3}}} = {{5x} \over {x + 1}}\)

Vậy cặp phân thức cần tìm là \(\displaystyle {1 \over {x + 1}}\) và \(\displaystyle {{5x} \over {x + 1}}\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"