Bài 10 trang 26 SBT toán 8 tập 1

2024-09-14 09:03:52

Chứng minh các đẳng thức sau:

LG a

\(\displaystyle {{{x^2}y + 2x{y^2} + {y^3}} \over {2{x^2} + xy - {y^2}}} = {{xy + {y^2}} \over {2x - y}}\)

Phương pháp giải:

Ta biến đổi vế trái của đẳng thức sao cho thông qua các phép biến đổi thì vế trái bằng vế phải.

Lời giải chi tiết:

Biến đổi vế trái:

\(\displaystyle VT={{{x^2}y + 2x{y^2} + {y^3}} \over {2{x^2} + xy - {y^2}}} \)

\(\displaystyle = {{y\left( {{x^2} + 2xy + {y^2}} \right)} \over {2{x^2} + 2xy - xy - {y^2}}}\)

\(\displaystyle = {{y{{\left( {x + y} \right)}^2}} \over {2x\left( {x + y} \right) - y\left( {x + y} \right)}}\)

\( \displaystyle = {{y{{\left( {x + y} \right)}^2}} \over {\left( {x + y} \right)\left( {2x - y} \right)}} \)

\(\displaystyle = {{y\left( {x + y} \right)} \over {2x - y}} = {{xy + {y^2}} \over {2x - y}}=VP\)

Vậy đẳng thức được chứng minh.


LG b

\(\displaystyle {{{x^2} + 3xy + 2{y^2}} \over {{x^3} + 2{x^2}y - x{y^2} - 2{y^3}}} = {1 \over {x - y}}\)

Phương pháp giải:

Ta biến đổi vế trái của đẳng thức sao cho thông qua các phép biến đổi thì vế trái bằng vế phải.

Lời giải chi tiết:

Biến đổi vế trái:

\(\displaystyle VT= {{{x^2} + 3xy + 2{y^2}} \over {{x^3} + 2{x^2}y - x{y^2} - 2{y^3}}} \)

\(\displaystyle = {{{x^2} + xy + 2xy + 2{y^2}} \over {{x^2}\left( {x + 2y} \right) - {y^2}\left( {x + 2y} \right)}} \)

\(\displaystyle = {{x\left( {x + y} \right) + 2y\left( {x + y} \right)} \over {\left( {x + 2y} \right)\left( {{x^2} - {y^2}} \right)}}\)

\( \displaystyle = {{\left( {x + y} \right)\left( {x + 2y} \right)} \over {\left( {x + 2y} \right)\left( {x + y} \right)\left( {x - y} \right)}}\)

\(\displaystyle = {1 \over {x - y}}=VP\)

Vậy đẳng thức được chứng minh.

(Với VT: vế trái, VP: vế phải)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"