Bài 17 trang 28 SBT toán 8 tập 1

2024-09-14 09:04:01

Cộng các phân thức cùng mẫu thức

LG a

\(\displaystyle {{1 - 2x} \over {6{x^3}y}} + {{3 + 2y} \over {6{x^3}y}} + {{2x - 4} \over {6{x^3}y}}\)

Phương pháp giải:

Quy tắc: Muốn cộng hai phân thức cùng mẫu thức ta cộng các tử thức với nhau, giữ nguyên mẫu thức.

               \( \dfrac{A}{B}+\dfrac{C}{B}=\dfrac{A+C}{B}\)

Giải chi tiết:

\(\displaystyle {{1 - 2x} \over {6{x^3}y}} + {{3 + 2y} \over {6{x^3}y}} + {{2x - 4} \over {6{x^3}y}}\)

\(\displaystyle  = {{1 - 2x + 3 + 2y + 2x - 4} \over {6{x^3}y}} \)\(\,\displaystyle= {{2y} \over {6{x^3}y}} = {1 \over {3{x^3}}}\)


LG b

\(\displaystyle {{{x^2} - 2} \over {x{{\left( {x - 1} \right)}^2}}} + {{2 - x} \over {x{{\left( {x - 1} \right)}^2}}}\)

Phương pháp giải:

Quy tắc: Muốn cộng hai phân thức cùng mẫu thức ta cộng các tử thức với nhau, giữ nguyên mẫu thức.

               \( \dfrac{A}{B}+\dfrac{C}{B}=\dfrac{A+C}{B}\)

Giải chi tiết:

\(\displaystyle {{{x^2} - 2} \over {x{{\left( {x - 1} \right)}^2}}} + {{2 - x} \over {x{{\left( {x - 1} \right)}^2}}}\)

\( \displaystyle= {{{x^2} - 2 + 2 - x} \over {x{{\left( {x - 1} \right)}^2}}}=\dfrac{{{x^2} - x}}{{x{{\left( {x - 1} \right)}^2}}} \)\(\,\displaystyle  = {{x\left( {x - 1} \right)} \over {x{{\left( {x - 1} \right)}^2}}} \displaystyle= {1 \over {x - 1}}\)


LG c

\(\displaystyle {{3x + 1} \over {{x^2} - 3x + 1}} + {{{x^2} - 6x} \over {{x^2} - 3x + 1}}\)

Phương pháp giải:

Quy tắc: Muốn cộng hai phân thức cùng mẫu thức ta cộng các tử thức với nhau, giữ nguyên mẫu thức.

               \( \dfrac{A}{B}+\dfrac{C}{B}=\dfrac{A+C}{B}\)

Giải chi tiết:

\(\displaystyle{{3x + 1} \over {{x^2} - 3x + 1}} + {{{x^2} - 6x} \over {{x^2} - 3x + 1}}\)

\(\displaystyle = {{3x + 1 + {x^2} - 6x} \over {{x^2} - 3x + 1}} = {{{x^2} - 3x + 1} \over {{x^2} - 3x + 1}} \)\(\,= 1\)


LG d

\(\displaystyle {{{x^2} + 38x + 4} \over {2{x^2} + 17x + 1}} + {{3{x^2} - 4x - 2} \over {2{x^2} + 17x + 1}}\)

Phương pháp giải:

Quy tắc: Muốn cộng hai phân thức cùng mẫu thức ta cộng các tử thức với nhau, giữ nguyên mẫu thức.

               \( \dfrac{A}{B}+\dfrac{C}{B}=\dfrac{A+C}{B}\)

Giải chi tiết:

\(\displaystyle {{{x^2} + 38x + 4} \over {2{x^2} + 17x + 1}} + {{3{x^2} - 4x - 2} \over {2{x^2} + 17x + 1}}\)

\(\displaystyle = {{{x^2} + 38x + 4 + 3{x^2} - 4x - 2} \over {2{x^2} + 17x + 1}} \)

\(\displaystyle = {{4{x^2} + 34x + 2} \over {2{x^2} + 17x + 1}}\)

\(\displaystyle = {{2\left( {2{x^2} + 17x + 1} \right)} \over {2{x^2} + 17x + 1}} = 2\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"