Bài 28 trang 31 SBT toán 8 tập 1

2024-09-14 09:04:04

LG a

Chứng minh \(\displaystyle{1 \over x} - {1 \over {x + 1}} = {1 \over {x\left( {x + 1} \right)}}.\)

Phương pháp giải:

Áp dụng quy tắc trừ hai phân thức :

\(\dfrac{A}{B} - \dfrac{C}{D} = \dfrac{A}{B} + \left( {\dfrac{{ - C}}{D}} \right).\)

Lời giải chi tiết:

Biến đổi vế trái :

\(\displaystyle{1 \over x} - {1 \over {x + 1}} = {{x + 1} \over {x\left( {x + 1} \right)}} + {{ - x} \over {x\left( {x + 1} \right)}} \) \(\displaystyle= {{x + 1 - x} \over {x\left( {x + 1} \right)}} = {1 \over {x\left( {x + 1} \right)}}\)

Vế trái bằng vế phải, đẳng thức được chứng minh.


LG b

Đố. Đố em tính nhẩm được tổng sau :

\(\displaystyle{1 \over {x\left( {x + 1} \right)}} + {1 \over {\left( {x + 1} \right)\left( {x + 2} \right)}} \) \(\displaystyle+ {1 \over {\left( {x + 2} \right)\left( {x + 3} \right)}} + {1 \over {\left( {x + 3} \right)\left( {x + 4} \right)}} \) \(\displaystyle+ {1 \over {\left( {x + 4} \right)\left( {x + 5} \right)}} + {1 \over {x + 5}}\) 

Phương pháp giải:

Dựa vào kết quả câu a) để phân tích mỗi phân thức thành một hiệu hai phân thức thích hợp.

Lời giải chi tiết:

\(\displaystyle{1 \over {x\left( {x + 1} \right)}} + {1 \over {\left( {x + 1} \right)\left( {x + 2} \right)}} \) \(\displaystyle+ {1 \over {\left( {x + 2} \right)\left( {x + 3} \right)}} + {1 \over {\left( {x + 3} \right)\left( {x + 4} \right)}} \) \(\displaystyle+ {1 \over {\left( {x + 4} \right)\left( {x + 5} \right)}} + {1 \over {x + 5}}\)

\(\displaystyle = {1 \over x} - {1 \over {x + 1}} + {1 \over {x + 1}} - {1 \over {x + 2}} \) \(\displaystyle+ {1 \over {x + 2}} - {1 \over {x + 3}} + {1 \over {x + 3}} - {1 \over {x + 4}} \) \(\displaystyle+ {1 \over {x + 4}} - {1 \over {x + 5}} + {1 \over {x + 5}} \)

\(\displaystyle= {1 \over x}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"