Rút gọn biểu thức :
LG câu a
\(\displaystyle{{3{x^2} + 5x + 1} \over {{x^3} - 1}} - {{1 - x} \over {{x^2} + x + 1}} - {3 \over {x - 1}}\)
Phương pháp giải:
- Áp dụng quy tắc trừ hai phân thức :
\(\dfrac{A}{B} - \dfrac{C}{D} = \dfrac{A}{B} + \left( {\dfrac{{ - C}}{D}} \right).\)
- Muốn rút gọn một phân thức đại số ta làm như sau:
+ Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung.
+ Chia cả tử và mẫu cho nhân tử chung giống nhau.
Lời giải chi tiết:
\(\displaystyle{{3{x^2} + 5x + 1} \over {{x^3} - 1}} - {{1 - x} \over {{x^2} + x + 1}} - {3 \over {x - 1}}\)
\(\displaystyle = {{3{x^2} + 5x + 1} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} + {{x - 1} \over {{x^2} + x + 1}} \) \(\displaystyle + {{ - 3} \over {x - 1}} \)
\(\displaystyle = {{3{x^2} + 5x + 1} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} \) \(\displaystyle + {{{{\left( {x - 1} \right)}^2}} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} \) \(\displaystyle+ {{ - 3\left( {{x^2} + x + 1} \right)} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} \)
\(\displaystyle = {{3{x^2} + 5x + 1 + x^2-2x+1 - 3{x^2} - 3x - 3} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} \) \(\displaystyle= {{{x^2} - 1} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} \)
\(\displaystyle = {{\left( {x + 1} \right)\left( {x - 1} \right)} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = {{x + 1} \over {{x^2} + x + 1}} \)
LG câu b
\(\displaystyle{1 \over {{x^2} - x + 1}} + 1 - {{{x^2} + 2} \over {{x^3} + 1}}\)
Phương pháp giải:
- Áp dụng quy tắc trừ hai phân thức :
\(\dfrac{A}{B} - \dfrac{C}{D} = \dfrac{A}{B} + \left( {\dfrac{{ - C}}{D}} \right).\)
- Muốn rút gọn một phân thức đại số ta làm như sau:
- Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung.
- Chia cả tử và mẫu cho nhân tử chung giống nhau.
Lời giải chi tiết:
\(\displaystyle{1 \over {{x^2} - x + 1}} + 1 - {{{x^2} + 2} \over {{x^3} + 1}}\)\(\displaystyle = {1 \over {{x^2} - x + 1}} + 1 \) \(\displaystyle + {{ - \left( {{x^2} + 2} \right)} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}\)
\(\displaystyle = {{x + 1} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} \) \(\displaystyle + {{{x^3} + 1} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} \) \(\displaystyle + {{ - \left( {{x^2} + 2} \right)} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} \)
\(\displaystyle = {{x + 1 + {x^3} + 1 - {x^2} - 2} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} \) \(\displaystyle= {{x + {x^3} - {x^2}} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} \)
\(\displaystyle= {{x\left( {{x^2} - x + 1} \right)} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = {x \over {x + 1}} \)
LG câu c
\(\displaystyle{7 \over x} - {x \over {x + 6}} + {{36} \over {{x^2} + 6x}}\)
Phương pháp giải:
- Áp dụng quy tắc trừ hai phân thức :
\(\dfrac{A}{B} - \dfrac{C}{D} = \dfrac{A}{B} + \left( {\dfrac{{ - C}}{D}} \right).\)
- Muốn rút gọn một phân thức đại số ta làm như sau:
- Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung.
- Chia cả tử và mẫu cho nhân tử chung giống nhau.
Lời giải chi tiết:
\(\displaystyle{7 \over x} - {x \over {x + 6}} + {{36} \over {{x^2} + 6x}}\)\(\displaystyle = {7 \over x} + {{ - x} \over {x + 6}} + {{36} \over {{x^2} + 6x}} \)
\(\displaystyle= {{7\left( {x + 6} \right)} \over {x\left( {x + 6} \right)}} + {{ - {x^2}} \over {x\left( {x + 6} \right)}} + {{36} \over {x\left( {x + 6} \right)}}\) \(\displaystyle= {{7x + 42 - {x^2} + 36} \over {x\left( {x + 6} \right)}} \)
\(\displaystyle= {{7x - {x^2} + 78} \over {x\left( {x + 6} \right)}} \) \(\displaystyle = {{13x + 78 - 6x - {x^2}} \over {x\left( {x + 6} \right)}} \)
\(\displaystyle = {{13\left( {x + 6} \right) - x\left( {x + 6} \right)} \over {x\left( {x + 6} \right)}} \) \(\displaystyle = {{\left( {x + 6} \right)\left( {13 - x} \right)} \over {x\left( {x + 6} \right)}} = {{13 - x} \over x} \)
[hoctot.me - Trợ lý học tập AI]