Bài 33 trang 33 SBT toán 8 tập 1

2024-09-14 09:04:08

Tính tích \(x,\, y\) , biết rằng \(x\) và \(y\) thỏa mãn các đẳng thức sau (\(a,\, b\) là các hằng số) :

Chú ý rằng: \(\displaystyle{a^2} + ab + {b^2} = {a^2} + 2a.{b \over 2} + {{{b^2}} \over 4} + {{3{b^2}} \over 4} \) \(\displaystyle = {\left( {a + {b \over 2}} \right)^2} + {{3{b^2}} \over 4} \ge 0\).

Do đó nếu \(a ≠ 0\) hoặc \(b ≠ 0\) thì \(\displaystyle{a^2} + ab + {b^2} > 0\)

LG a

\(\displaystyle\left( {4{a^2} - 9} \right)x = 4a + 4\) với \(\displaystyle a ≠ \pm {3 \over 2}\) và \(\displaystyle\left( {3{a^3} + 3} \right)y = 6{a^2} + 9a\) với \(\displaystyle a ≠ − 1\).

Phương pháp giải:

Muốn nhân hai phân thức, ta nhân các tử thức với nhau, nhân các mẫu thức với nhau.

Với \(B,D\ne 0\) ta có: \(\dfrac{A}{B}.\dfrac{C}{D} = \dfrac{{A.C}}{{B.D}}\)

Lời giải chi tiết:

Vì  \(a ≠ \displaystyle \pm {3 \over 2}\) nên \(\displaystyle4{a^2} - 9 \ne 0 \) \(\displaystyle\Rightarrow x = {{4a + 4} \over {4{a^2} - 9}}\)

Vì \(a ≠ − 1\) nên \(\displaystyle3{a^3} + 3 \ne 0 \) \(\displaystyle \Rightarrow y = {{6{a^2} + 9a} \over {3{a^3} + 3}}\)

Do đó:

\(\displaystyle xy = {{4a + 4} \over {4{a^2} - 9}}.{{6{a^2} + 9a} \over {3{a^3} + 3}} \) 

\(\displaystyle = {{\left( {4a + 4} \right).\left( {6a^2 + 9a} \right)} \over {\left( {4a^2 - 9} \right)\left( {{3a^3} + 3} \right)}}\)

\(\displaystyle = {{4\left( {a + 1} \right).3a\left( {2a + 3} \right)} \over {\left( {2a + 3} \right)\left( {2a - 3} \right).3\left( {{a^3} + 1} \right)}}\)

\(\displaystyle = {{4a\left( {a + 1} \right)} \over {\left( {2a - 3} \right)\left( {a + 1} \right)\left( {{a^2} - a + 1} \right)}} \) \(\displaystyle= {{4a} \over {\left( {2a - 3} \right)\left( {{a^2} - a + 1} \right)}}\)


LG b

\(\displaystyle\left( {2{a^3} - 2{b^3}} \right)x - 3b = 3a\) với \(\displaystyle a ≠ b\) và \(\displaystyle\left( {6a + 6b} \right)y = {\left( {a - b} \right)^2}\) với \(\displaystyle a ≠ − b\).

Chú ý rằng: \(\displaystyle{a^2} + ab + {b^2} = {a^2} + 2a.{b \over 2} + {{{b^2}} \over 4} + {{3{b^2}} \over 4} \) \(\displaystyle = {\left( {a + {b \over 2}} \right)^2} + {{3{b^2}} \over 4} \ge 0\).

Do đó nếu \(a ≠ 0\) hoặc \(b ≠ 0\) thì \(\displaystyle{a^2} + ab + {b^2} > 0\)

Phương pháp giải:

Muốn nhân hai phân thức, ta nhân các tử thức với nhau, nhân các mẫu thức với nhau.

Với \(B,D\ne 0\) ta có: \(\dfrac{A}{B}.\dfrac{C}{D} = \dfrac{{A.C}}{{B.D}}\)

Lời giải chi tiết:

 Vì \(a ≠ b\) nên \(\displaystyle 2{a^3} - 2{b^3} \ne 0 \) \(\displaystyle \Rightarrow x = {{3a + 3b} \over {2{a^3} - 2{b^3}}}\)

Vì \(a ≠ − b\) nên \(\displaystyle 6a + 6b \ne 0 \) \(\displaystyle \Rightarrow y = {{{{\left( {a - b} \right)}^2}} \over {6a + 6b}}\)

Do đó :

\(\displaystyle xy = {{3a + 3b} \over {2{a^3} - 2{b^3}}}.{{{{\left( {a - b} \right)}^2}} \over {6a + 6b}} \) \(\displaystyle = {{3\left( {a + b} \right){{\left( {a - b} \right)}^2}} \over {2\left( {{a^3} - {b^3}} \right).6\left( {a + b} \right)}}\)

\(\displaystyle = {{{{\left( {a - b} \right)}^2}} \over {4\left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)}} \) \(\displaystyle= {{a - b} \over {4\left( {{a^2} + ab + {b^2}} \right)}}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"