Bài 41 trang 34 SBT toán 8 tập 1

2024-09-14 09:04:11

Rút gọn các biểu thức ( chú ý đến thứ tự thực hiện các phép tính) :

LG câu a

\(\displaystyle{{x + 1} \over {x + 2}}:{{x + 2} \over {x + 3}}:{{x + 3} \over {x + 1}}\)

Phương pháp giải:

- Biểu thức có dấu ngoặc thì tính trong ngoặc trước, ngoài ngoặc sau.

- Biểu thức chỉ có phép nhân và phép chia thì thực hiện từ trái sang phải.

- Áp dụng quy tắc chia hai phân thức : 

\( \dfrac{A}{B} :  \dfrac{C}{D} =   \dfrac{A}{B}.  \dfrac{D}{C}\) với \( \dfrac{C}{D} ≠ 0\).

- Muốn rút gọn một phân thức ta có thể : 

+ Phân tích tử thức và mẫu thức thành nhân tử (nếu cần) để tìm nhân tử chung;

+ Chia cả tử và mẫu cho nhân tử chung.

Giải chi tiết:

\(\displaystyle{{x + 1} \over {x + 2}}:{{x + 2} \over {x + 3}}:{{x + 3} \over {x + 1}}\)\(\displaystyle = {{x + 1} \over {x + 2}}.{{x + 3} \over {x + 2}}.{{x + 1} \over {x + 3}}\)

\(\displaystyle = {{\left( {x + 1} \right)\left( {x + 3} \right)\left( {x + 1} \right)} \over {\left( {x + 2} \right)\left( {x + 2} \right)\left( {x + 3} \right)}} \)\(\displaystyle = {{{{\left( {x + 1} \right)}^2}} \over {{{\left( {x + 2} \right)}^2}}}\)


LG câu b

\(\displaystyle{{x + 1} \over {x + 2}}:\left( {{{x + 2} \over {x + 3}}:{{x + 3} \over {x + 1}}} \right)\)

Phương pháp giải:

- Biểu thức có dấu ngoặc thì tính trong ngoặc trước, ngoài ngoặc sau.

- Biểu thức chỉ có phép nhân và phép chia thì thực hiện từ trái sang phải.

- Áp dụng quy tắc chia hai phân thức : 

\( \dfrac{A}{B} :  \dfrac{C}{D} =   \dfrac{A}{B}.  \dfrac{D}{C}\) với \( \dfrac{C}{D} ≠ 0\).

- Muốn rút gọn một phân thức ta có thể : 

+ Phân tích tử thức và mẫu thức thành nhân tử (nếu cần) để tìm nhân tử chung;

+ Chia cả tử và mẫu cho nhân tử chung.

Giải chi tiết:

\(\displaystyle{{x + 1} \over {x + 2}}:\left( {{{x + 2} \over {x + 3}}:{{x + 3} \over {x + 1}}} \right)\) \(\displaystyle = {{x + 1} \over {x + 2}}:\left( {{{x + 2} \over {x + 3}}.{{x + 1} \over {x + 3}}} \right) \)

\(\displaystyle= {{x + 1} \over {x + 2}}:{{\left( {x + 2} \right)\left( {x + 1} \right)} \over {{{\left( {x + 3} \right)}^2}}}  \) \(\displaystyle  = {{x + 1} \over {x + 2}}.{{{{\left( {x + 3} \right)}^2}} \over {\left( {x + 2} \right)\left( {x + 1} \right)}} \) \(\displaystyle= {{{{\left( {x + 3} \right)}^2}} \over {{{\left( {x + 2} \right)}^2}}}  \)


LG câu c

\(\displaystyle{{x + 1} \over {x + 2}}.{{x + 2} \over {x + 3}}:{{x + 3} \over {x + 1}}\)

Phương pháp giải:

- Biểu thức có dấu ngoặc thì tính trong ngoặc trước, ngoài ngoặc sau.

- Biểu thức chỉ có phép nhân và phép chia thì thực hiện từ trái sang phải.

- Áp dụng quy tắc chia hai phân thức : 

\( \dfrac{A}{B} :  \dfrac{C}{D} =   \dfrac{A}{B}.  \dfrac{D}{C}\) với \( \dfrac{C}{D} ≠ 0\).

- Muốn rút gọn một phân thức ta có thể : 

+ Phân tích tử thức và mẫu thức thành nhân tử (nếu cần) để tìm nhân tử chung;

+ Chia cả tử và mẫu cho nhân tử chung.

Giải chi tiết:

\(\displaystyle{{x + 1} \over {x + 2}}.{{x + 2} \over {x + 3}}:{{x + 3} \over {x + 1}}\)\(\displaystyle = {{\left( {x + 1} \right)\left( {x + 2} \right)} \over {\left( {x + 2} \right)\left( {x + 3} \right)}}.{{x + 1} \over {x + 3}} \)\(\displaystyle = {{{{\left( {x + 1} \right)}^2}} \over {{{\left( {x + 3} \right)}^2}}}\)


LG d

\(\displaystyle{{x + 1} \over {x + 2}}.\left( {{{x + 2} \over {x + 3}}:{{x + 3} \over {x + 1}}} \right)\)

Phương pháp giải:

- Biểu thức có dấu ngoặc thì tính trong ngoặc trước, ngoài ngoặc sau.

- Biểu thức chỉ có phép nhân và phép chia thì thực hiện từ trái sang phải.

- Áp dụng quy tắc chia hai phân thức : 

\( \dfrac{A}{B} :  \dfrac{C}{D} =   \dfrac{A}{B}.  \dfrac{D}{C}\) với \( \dfrac{C}{D} ≠ 0\).

- Muốn rút gọn một phân thức ta có thể : 

+ Phân tích tử thức và mẫu thức thành nhân tử (nếu cần) để tìm nhân tử chung;

+ Chia cả tử và mẫu cho nhân tử chung.

Giải chi tiết:

\(\displaystyle{{x + 1} \over {x + 2}}.\left( {{{x + 2} \over {x + 3}}:{{x + 3} \over {x + 1}}} \right)\)\(\displaystyle = {{x + 1} \over {x + 2}}.\left( {{{x + 2} \over {x + 3}}.{{x + 1} \over {x + 3}}} \right)\)

\(\displaystyle = {{x + 1} \over {x + 2}}.{{\left( {x + 2} \right)\left( {x + 1} \right)} \over {{{\left( {x + 3} \right)}^2}}}\) \(\displaystyle = {{{{\left( {x + 1} \right)}^2}} \over {{{\left( {x + 3} \right)}^2}}}\)


LG e

\(\displaystyle{{x + 1} \over {x + 2}}:{{x + 2} \over {x + 3}}.{{x + 3} \over {x + 1}}\)

Phương pháp giải:

- Biểu thức có dấu ngoặc thì tính trong ngoặc trước, ngoài ngoặc sau.

- Biểu thức chỉ có phép nhân và phép chia thì thực hiện từ trái sang phải.

- Áp dụng quy tắc chia hai phân thức : 

\( \dfrac{A}{B} :  \dfrac{C}{D} =   \dfrac{A}{B}.  \dfrac{D}{C}\) với \( \dfrac{C}{D} ≠ 0\).

- Muốn rút gọn một phân thức ta có thể : 

+ Phân tích tử thức và mẫu thức thành nhân tử (nếu cần) để tìm nhân tử chung;

+ Chia cả tử và mẫu cho nhân tử chung.

Giải chi tiết:

\(\displaystyle{{x + 1} \over {x + 2}}:{{x + 2} \over {x + 3}}.{{x + 3} \over {x + 1}}\)\(\displaystyle = {{x + 1} \over {x + 2}}.{{x + 3} \over {x + 2}}.{{x + 3} \over {x + 1}} = {{{{\left( {x + 3} \right)}^2}} \over {{{\left( {x + 2} \right)}^2}}}\)


LG f

\(\displaystyle{{x + 1} \over {x + 2}}:\left( {{{x + 2} \over {x + 3}}.{{x + 3} \over {x + 1}}} \right)\) 

Phương pháp giải:

- Biểu thức có dấu ngoặc thì tính trong ngoặc trước, ngoài ngoặc sau.

- Biểu thức chỉ có phép nhân và phép chia thì thực hiện từ trái sang phải.

- Áp dụng quy tắc chia hai phân thức : 

\( \dfrac{A}{B} :  \dfrac{C}{D} =   \dfrac{A}{B}.  \dfrac{D}{C}\) với \( \dfrac{C}{D} ≠ 0\).

- Muốn rút gọn một phân thức ta có thể : 

+ Phân tích tử thức và mẫu thức thành nhân tử (nếu cần) để tìm nhân tử chung;

+ Chia cả tử và mẫu cho nhân tử chung.

Giải chi tiết:

\(\displaystyle{{x + 1} \over {x + 2}}:\left( {{{x + 2} \over {x + 3}}.{{x + 3} \over {x + 1}}} \right)\)\(\displaystyle = {{x + 1} \over {x + 2}}:{{x + 2} \over {x + 1}} \)

\(\displaystyle = {{x + 1} \over {x + 2}}.{{x + 1} \over {x + 2}} = {{{{\left( {x + 1} \right)}^2}} \over {{{\left( {x + 2} \right)}^2}}}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"