Bài 9.2 phần bài tập bổ sung trang 39 SBT toán 8 tập 1

2024-09-14 09:04:13

Với mỗi biểu thức sau, hãy tìm giá trị của \(x\) để giá trị tương ứng của biểu thức bằng \(1\) :

LG a

\(\displaystyle {{1 + {x^2} + \displaystyle {1 \over x}} \over {2 + \displaystyle {1 \over x}}}\)

Phương pháp giải:

- Tìm điều kiện xác định của phân thức.

- Cho giá trị biểu thức bằng \(1\); rồi biến đổi biểu thức về dạng đơn giản.

- Tìm giá trị của \(x\).

Lời giải chi tiết:

\(\displaystyle {{1 + {x^2} + \displaystyle {1 \over x}} \over {2 + \displaystyle {1 \over x}}}\) điều kiện \(x ≠ 0\) và  \(x ≠ \displaystyle - {1 \over 2}\)

Để giá trị của phân thức đã cho bằng \(1\) thì: 

\(\displaystyle {{1 + {x^2} + \displaystyle {1 \over x}} \over {2 + \displaystyle {1 \over x}}}=1\)

\(\begin{array}{l}
\Rightarrow \left( {1 + {x^2} + \dfrac{1}{x}} \right) = 1.\left( {2 + \dfrac{1}{x}} \right)\\
\Leftrightarrow 1 + {x^2} + \dfrac{1}{x} - 2 - \dfrac{1}{x} = 0\\
\Leftrightarrow {x^2} - 1 = 0\\
\Leftrightarrow {x^2} = 1\\
\Leftrightarrow \left[ \begin{array}{l}
x = 1\,\text{(thỏa mãn)}\\
x = - 1\,\text{(thỏa mãn)}
\end{array} \right.
\end{array}\)

Vậy \(x = 1\) hoặc \(x = -1\).


LG b

\(\displaystyle {{1 + {x^2} - \displaystyle {4 \over {x + 1}}} \over {2 - \displaystyle {4 \over {x + 1}}}}\)

Phương pháp giải:

- Tìm điều kiện xác định của phân thức.

- Cho giá trị biểu thức bằng \(1\); rồi biến đổi biểu thức về dạng đơn giản.

- Tìm giá trị của \(x\).

Lời giải chi tiết:

Điều kiện: 

\(\begin{array}{l}
\left\{ \begin{array}{l}
x + 1 \ne 0\\
2 - \dfrac{4}{{x + 1}} \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ne - 1\\
\dfrac{4}{{x + 1}} \ne 2
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x \ne - 1\\
2\left( {x + 1} \right) \ne 4
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ne - 1\\
x + 1 \ne 2
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ne 1\\
x \ne - 1
\end{array} \right.
\end{array}\)

Vậy \(\displaystyle {{1 + {x^2} - \displaystyle {4 \over {x + 1}}} \over {2 - \displaystyle {4 \over {x + 1}}}}\)  có điều kiện là \(x ≠ 1\) và \(x ≠ - 1\)

Để biểu thức đã cho có giá trị bằng 1 thì 

\(\displaystyle {{1 + {x^2} - \displaystyle {4 \over {x + 1}}} \over {2 - \displaystyle {4 \over {x + 1}}}}=1\)

\(\begin{array}{l}
\Rightarrow 1 + {x^2} - \dfrac{4}{{x + 1}} = 2 - \dfrac{4}{{x + 1}}\\
\Leftrightarrow 1 + {x^2} - \dfrac{4}{{x - 1}} - 2 + \dfrac{4}{{x - 1}} = 0\\
\Leftrightarrow {x^2} - 1 = 0\\
\Leftrightarrow {x^2} = 1\\
\Leftrightarrow \left[ \begin{array}{l}
x = 1\\
x = - 1
\end{array} \right.
\end{array}\)

Mà \(x = 1\) và \(x = -1\) không thỏa mãn điều kiện.

Vậy không có giá trị nào của \(x\) để giá trị tương ứng của biểu thức bằng \(1\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"