Bài 56 trang 38 SBT toán 8 tập 1

2024-09-14 09:04:14

Với giá trị nào của \(x\) thì giá trị của mỗi biểu thức sau bằng \(0\) :

LG a

\(\displaystyle {x \over {{x^2} - 4}} + {3 \over {{{\left( {x + 2} \right)}^2}}}\)

Phương pháp giải:

- Biến đổi phân thức về dạng đơn giản.

- Cho giá trị biểu thức bằng \(0\); giải rồi tìm giá trị của \(x\).

Lời giải chi tiết:

Điều kiện:

\(\begin{array}{l}
\left\{ \begin{array}{l}
{x^2} - 4 \ne 0\\
{\left( {x + 2} \right)^2} \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\left( {x - 2} \right)\left( {x + 2} \right) \ne 0\\
x + 2 \ne 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x - 2 \ne 0\\
x + 2 \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ne 2\\
x \ne - 2
\end{array} \right.
\end{array}\)

\(\Leftrightarrow x\ne \pm 2\)

Ta có: 

\(\displaystyle {x \over {{x^2} - 4}} + {3 \over {{{\left( {x + 2} \right)}^2}}}\)\(\displaystyle  = {x \over {\left( {x + 2} \right)\left( {x - 2} \right)}} + {3 \over {{{\left( {x + 2} \right)}^2}}}\)\(\displaystyle  = {{x\left( {x + 2} \right) + 3\left( {x - 2} \right)} \over {\left( {x - 2} \right){{\left( {x + 2} \right)}^2}}}\)

\(\displaystyle  = {{{x^2} + 2x + 3x - 6} \over {\left( {x - 2} \right){{\left( {x + 2} \right)}^2}}}\)

\( = \dfrac{{{x^2} + 5x - 6}}{{\left( {x - 2} \right){{\left( {x + 2} \right)}^2}}}\)

\(\displaystyle  = {{{x^2} - x + 6x - 6} \over {\left( {x - 2} \right){{\left( {x + 2} \right)}^2}}}\)\(\displaystyle  = {{x\left( {x - 1} \right) + 6\left( {x - 1} \right)} \over {\left( {x - 2} \right){{\left( {x + 2} \right)}^2}}} \)\(\displaystyle = {{\left( {x - 1} \right)\left( {x + 6} \right)} \over {\left( {x - 2} \right){{\left( {x + 2} \right)}^2}}}\)

Biểu thức bằng \(0\) khi \(\left( {x - 1} \right)\left( {x + 6} \right) = 0\) 

Ta có: \(\left( {x - 1} \right)\left( {x + 6} \right) = 0 \)

\(\Rightarrow x - 1=0 \) hoặc \(x +6=0\)

\(\Rightarrow x = 1 \) (thỏa mãn) hoặc \(x =  - 6\) (thỏa mãn)

Vậy với \(x = 1\) hoặc \(x = - 6\) thì giá trị của biểu thức bằng \(0\).


LG b

\(\displaystyle {1 \over {{x^2} + x + 1}} + x - 1\) 

Phương pháp giải:

- Biến đổi phân thức về dạng đơn giản.

- Cho giá trị biểu thức bằng \(0\); giải rồi tìm giá trị của \(x\).

Lời giải chi tiết:

Điều kiện: \({x^2} + x + 1 \ne 0.\) 

Ta có: \({x^2} + x + 1 = {x^2} + 2.x.\displaystyle {1 \over 2} + {1 \over 4} + {3 \over 4}\)\(\displaystyle  = {\left( {x + {1 \over 2}} \right)^2} + {3 \over 4} \ne 0\) với mọi \(x\).

Do đó: \(\displaystyle {1 \over {{x^2} + x + 1}} + x - 1\)\(\displaystyle  = {{1 + \left( {x - 1} \right)\left( {{x^2} + x + 1} \right)} \over {{x^2} + x + 1}}\)\(\displaystyle  = {{1 + {x^3} - 1} \over {{x^2} + x + 1}} = {{{x^3}} \over {{x^2} + x + 1}}\)

Biểu thức bằng \(0\) khi \({x^3} = 0\) \( \Rightarrow x = 0\)

Vậy với \(x = 0\) thì giá trị của biểu thức bằng \(0\). 

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"