Bài 48 trang 37 SBT toán 8 tập 1

2024-09-14 09:04:16

Đề bài

Có bạn nói rằng các phân thức \(\displaystyle {{2x} \over {2x - 2}},\)\(\displaystyle {1 \over {{x^2} - 2x + 1}},\)\(\displaystyle {{5{x^3}} \over {\left( {x - 1} \right)\left( {{x^2} + 1} \right)}}\)  có cùng điều kiện của biến \(x\).

Điều đó đúng hay sai ? Vì sao ? 

Phương pháp giải - Xem chi tiết

Vận dụng kiến thức : Cách tìm điều kiện để giá trị của phân thức được xác định là tìm điều kiện của biến để giá trị của mẫu thức khác \(0\).

Lời giải chi tiết

Các phân thức  \(\displaystyle {{2x} \over {2x - 2}},\)\(\displaystyle {1 \over {{x^2} - 2x + 1}},\)\(\displaystyle {{5{x^3}} \over {\left( {x - 1} \right)\left( {{x^2} + 1} \right)}}\) có cùng điều kiện biến \(x\) là đúng vì:

Phân thức \(\displaystyle {{2x} \over {2x - 2}}\)  xác định khi \(2x - 2 \ne 0\)\(\Rightarrow 2x \ne 2\)\( \Rightarrow x \ne 1;\)

Phân thức \(\displaystyle {1 \over {{x^2} - 2x + 1}} = {1 \over {{{\left( {x - 1} \right)}^2}}}\) xác định khi \({\left( {x - 1} \right)^2} \ne 0\)\( \Rightarrow x - 1 \ne 0 \)\(\Rightarrow x \ne 1;\)

Phân thức \(\displaystyle  {{5{x^3}} \over {\left( {x - 1} \right)\left( {{x^2} + 1} \right)}}\) xác định khi \(\left( {x - 1} \right)\left( {{x^2} + 1} \right) \ne 0\)\( \Rightarrow x - 1 \ne 0\)\( \Rightarrow x \ne 1\).

Chú ý: \(x^2+1\ge 1>0\) với mọi \(x\) nên \(x^2+1\ne 0\) với mọi \(x\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"