Bài 44 trang 36 SBT toán 8 tập 1

2024-09-14 09:04:16

Biến đổi các biểu thức sau thành phân thức

LG a

\(\displaystyle {1 \over 2} + \displaystyle {x \over {1 - \displaystyle {x \over {x + 2}}}}\)

Phương pháp giải:

Vận dụng kiến thức về các quy tắc của các phép toán cộng, trừ, nhân, chia các phân thức.

Lời giải chi tiết:

\(\displaystyle {1 \over 2} + {x \over \displaystyle {1 - {x \over {x + 2}}}}\)\( \displaystyle = {1 \over 2} + \displaystyle {x \over {\displaystyle{{x + 2 - x} \over {x + 2}}}} = {1 \over 2} + {x \over {\displaystyle{2 \over {x + 2}}}}\)

\(=\dfrac{1}{2} + \dfrac{{x\left( {x + 2} \right)}}{2} = \dfrac{{{x^2} + 2x + 1}}{2}\)\( = \dfrac{{{{\left( {x + 1} \right)}^2}}}{2}\)


LG b

\(\displaystyle {{x - \displaystyle {1 \over {{x^2}}}} \over {x + \displaystyle {1 \over x} + {1 \over {{x^2}}}}}\)

Phương pháp giải:

Vận dụng kiến thức về các quy tắc của các phép toán cộng, trừ, nhân, chia các phân thức.

Lời giải chi tiết:

\(\displaystyle {\displaystyle {x - {\displaystyle 1 \over {{x^2}}}} \over {\displaystyle x + {1 \over x} + {1 \over {{x^2}}}}}\) \( = \left( {x - \displaystyle {1 \over {{x^2}}}} \right):\left( \displaystyle {1 + {1 \over x} + {1 \over {{x^2}}}} \right)\)\(\displaystyle  = {{{x^3} - 1} \over {{x^2}}}:{{{x^2} + x + 1} \over {{x^2}}}\)

\(\displaystyle  = {{{x^3} - 1} \over {{x^2}}}.{{{x^2}} \over {{x^2} + x + 1}}\)\(\displaystyle  = {{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right){x^2}} \over {{x^2}\left( {{x^2} + x + 1} \right)}} = x - 1\)


LG c

\(\displaystyle {{1 - \displaystyle {{2y} \over x} + \displaystyle {{{y^2}} \over {{x^2}}}} \over \displaystyle {{1 \over x} - {1 \over y}}}\)

Phương pháp giải:

Vận dụng kiến thức về các quy tắc của các phép toán cộng, trừ, nhân, chia các phân thức.

Lời giải chi tiết:

\(\displaystyle {\displaystyle {1 - {{2y} \over x} + {{{y^2}} \over {{x^2}}}} \over {\displaystyle {1 \over x} - {1 \over y}}}\)\( \displaystyle  = \left( {1 - {{2y} \over x} + {{{y^2}} \over {{x^2}}}} \right):\left( {{1 \over x} - {1 \over y}} \right)\)\(\displaystyle  = {{{x^2} - 2xy + {y^2}} \over {{x^2}}}:{{y - x} \over {xy}}\)

\(\displaystyle  = {{(x-y)^2} \over {{x^2}}}.{{xy} \over {y - x}}\)\(\displaystyle  = {{{{\left( {y - x} \right)}^2}.xy} \over {{x^2}\left( {y - x} \right)}} = {{y\left( {y - x} \right)} \over x}\)


LG d

\(\displaystyle {\displaystyle {{x \over 4} - 1 + {3 \over {4x}}} \over {\displaystyle {x \over 2} - {6 \over x} + {1 \over 2}}}\)

Phương pháp giải:

Vận dụng kiến thức về các quy tắc của các phép toán cộng, trừ, nhân, chia các phân thức.

Lời giải chi tiết:

\(\displaystyle {\displaystyle {{x \over 4} - 1 + {3 \over {4x}}} \over {\displaystyle {x \over 2} - {6 \over x} + {1 \over 2}}}\)\(\displaystyle  = \left( {{x \over 4} - 1 + {3 \over {4x}}} \right):\left( {{x \over 2} - {6 \over x} + {1 \over 2}} \right)\)\(\displaystyle  = {{{x^2} - 4x + 3} \over {4x}}:{{{x^2} - 12 + x} \over {2x}}\)

\( \displaystyle   = {{{x^2} - 4x + 3} \over {4x}}.{{2x} \over {{x^2} - 12 + x}}\)\(\displaystyle  = {{{x^2} - x - 3x + 3} \over {4x}}.\)\(\displaystyle {{2x} \over {{x^2} - 3x + 4x - 12}} \)

\( = \dfrac{{x\left( {x - 1} \right) - 3\left( {x - 1} \right)}}{{4x}}.\dfrac{{2x}}{{x\left( {x - 3} \right) + 4\left( {x - 3} \right)}}\)

\( \displaystyle  = {{\left( {x - 1} \right)\left( {x - 3} \right)} \over {4x}}.{{2x} \over {\left( {x - 3} \right)\left( {x + 4} \right)}}\)\(\displaystyle  = {{\left( {x - 1} \right)\left( {x - 3} \right).2x} \over {4x\left( {x - 3} \right)\left( {x + 4} \right)}} = {{x - 1} \over {2\left( {x + 4} \right)}} \)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"