Bài 2.2 phần bài tập bổ sung trang 42 SBT toán 8 tập 1

2024-09-14 09:04:17

Đề bài

(Đề thi học sinh giỏi, lớp 8 toàn quốc năm 1980).

Thực hiện phép tính :

\(\displaystyle {1 \over {\left( {b - c} \right)\left( {{a^2} + ac - {b^2} - bc} \right)}} \)\(+\displaystyle  {1 \over {\left( {c - a} \right)\left( {{b^2} + ab - {c^2} - ac} \right)}} \)\(+\displaystyle  {1 \over {\left( {a - b} \right)\left( {{c^2} + bc - {a^2} - ab} \right)}}\)

Phương pháp giải - Xem chi tiết

Áp dụng quy tắc thực hiện phép tính cộng, trừ, nhân, chia phân thức rồi tính.

Lời giải chi tiết

\(\displaystyle {1 \over {\left( {b - c} \right)\left( {{a^2} + ac - {b^2} - bc} \right)}} \)\(+\displaystyle  {1 \over {\left( {c - a} \right)\left( {{b^2} + ab - {c^2} - ac} \right)}} \)\(+\displaystyle  {1 \over {\left( {a - b} \right)\left( {{c^2} + bc - {a^2} - ab} \right)}}\)

\(\displaystyle = {1 \over {\left( {b - c} \right)\left[ {\left( {a + b} \right)\left( {a - b} \right) + c\left( {a - b} \right)} \right]}} \)\(\displaystyle +{1 \over {\left( {c - a} \right)\left[ {\left( {b + c} \right)\left( {b - c} \right) + a\left( {b - c} \right)} \right]}} \)\(\displaystyle  + {1 \over {\left( {a - b} \right)\left[ {\left( {c + a} \right)\left( {c - a} \right) + b\left( {c - a} \right)} \right]}}\)

\(\displaystyle    = {1 \over {\left( {b - c} \right)\left( {a - b} \right) \left( {a + b + c} \right)}} \)\(+\displaystyle {1 \over {\left( {c - a} \right)\left( {b - c} \right)\left( {a + b + c} \right)}} \)\(+\displaystyle {1 \over {\left( {a - b} \right)\left( {c - a} \right)\left( {a + b + c} \right)}}\)

\(\displaystyle = {{c - a + a - b + b - c} \over {\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)\left( {a + b + c} \right)}}\)\( = 0  \)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"