Bài 65 trang 41 SBT toán 8 tập 1

2024-09-14 09:04:18

Chứng minh rằng:

LG a

Giá trị của biểu thức \(\displaystyle {\left( {{{x + 1} \over x}} \right)^2}\)\(:\displaystyle \left[ {{{{x^2} + 1} \over {{x^2}}} + {2 \over {x + 1}}\left( {{1 \over x} + 1} \right)} \right]\) bằng \(1\) với mọi giá trị \(x ≠ 0\) và \(x ≠ -1\)

Phương pháp giải:

Thực hiện các phép tính với phân thức để chứng minh khẳng định đã cho.

Lời giải chi tiết:

\(\displaystyle {\left( {{{x + 1} \over x}} \right)^2}\)\(:\displaystyle \left[ {{{{x^2} + 1} \over {{x^2}}} + {2 \over {x + 1}}\left( {{1 \over x} + 1} \right)} \right]\)

Biểu thức \(\displaystyle {\left( {{{x + 1} \over x}} \right)^2}\) xác định khi \(x \ne 0\)

Biểu thức \(\displaystyle {{{x^2} + 1} \over {{x^2}}} + {2 \over {x + 1}}\left( {{1 \over x} + 1} \right)\) xác định khi \(x \ne 0\) và \(x + 1 \ne 0\) hay xác định khi \(x \ne 0\) và \(x \ne  - 1\)

Vậy với điều kiện \(x \ne 0\) và \(x \ne -1\)

Ta có : \(\displaystyle {\left( {{{x + 1} \over x}} \right)^2}\)\(:\displaystyle \left[ {{{{x^2} + 1} \over {{x^2}}} + {2 \over {x + 1}}\left( {{1 \over x} + 1} \right)} \right]\)

\(\displaystyle   = {\left( {{{x + 1} \over x}} \right)^2}\)\(:\displaystyle \left[ {{{{x^2} + 1} \over {{x^2}}} + {2 \over {x + 1}}.{{1 + x} \over x}} \right]  \)\(\displaystyle   = {\left( {{{x + 1} \over x}} \right)^2}:\left( {{{{x^2} + 1} \over {{x^2}}} + {2 \over x}} \right)\)\(\displaystyle  = {\left( {{{x + 1} \over x}} \right)^2}:{{{x^2} + 1 + 2x} \over {{x^2}}}  \)\(\displaystyle  = {\left( {{{x + 1} \over x}} \right)^2}:{{{{\left( {x + 1} \right)}^2}} \over {{x^2}}}\)\(\displaystyle  = {{{{\left( {x + 1} \right)}^2}} \over {{x^2}}}.{{{x^2}} \over {{{\left( {x + 1} \right)}^2}}} = 1 \)

Vậy giá trị của biểu thức \(\displaystyle {\left( {{{x + 1} \over x}} \right)^2}\)\(:\displaystyle \left[ {{{{x^2} + 1} \over {{x^2}}} + {2 \over {x + 1}}\left( {{1 \over x} + 1} \right)} \right]\) bằng \(1\) với mọi giá trị \(x ≠ 0\) và \(x ≠ -1\)


LG b

Giá trị của biểu thức \(\displaystyle {x \over {x - 3}} - {{{x^2} + 3x} \over {2x + 3}}\)\(.\displaystyle \left( {{{x + 3} \over {{x^2} - 3x}} - {x \over {{x^2} - 9}}} \right)\) bằng \(1\) khi \(x \ne 0,\)\(x \ne  - 3,\)\(x \ne 3,\)\(x \ne  - {3 \over 2}\)

Phương pháp giải:

Thực hiện các phép tính với phân thức để chứng minh khẳng định đã cho.

Lời giải chi tiết:

Biểu thức : \(\displaystyle {x \over {x - 3}} - {{{x^2} + 3x} \over {2x + 3}}\)\(.\displaystyle \left( {{{x + 3} \over {{x^2} - 3x}} - {x \over {{x^2} - 9}}} \right)\) xác định khi \(x - 3 \ne 0,\) \(2x + 3 \ne 0,\) \({x^2} - 3x \ne 0\) và \({x^2} - 9 \ne 0\) hay \(x \ne 3;\)\(x \ne \displaystyle  - {3 \over 2};\) \(x \ne 0;\) \(x \ne 3\) và \(x \ne  \pm 3\)

Vậy điều kiện \(x \ne 0,\) \(x \ne 3,\) \(x \ne  - 3\) và \(x \ne \displaystyle  - {3 \over 2}\)

Ta có: \(\displaystyle {x \over {x - 3}} - {{{x^2} + 3x} \over {2x + 3}}\)\(.\displaystyle \left( {{{x + 3} \over {{x^2} - 3x}} - {x \over {{x^2} - 9}}} \right)\)

\(\displaystyle   = {x \over {x - 3}} - {{{x^2} + 3x} \over {2x + 3}}\)\(.\displaystyle \left[ {{{x + 3} \over {x\left( {x - 3} \right)}} - {x \over {\left( {x + 3} \right)\left( {x - 3} \right)}}} \right]  \)\(\displaystyle  = {x \over {x - 3}} - {{x\left( {x + 3} \right)} \over {2x + 3}}\)\(.\displaystyle {{{{\left( {x + 3} \right)}^2} - {x^2}} \over {x\left( {x + 3} \right)\left( {x - 3} \right)}}  \)\(\displaystyle  = {x \over {x - 3}} - {{{x^2} + 6x + 9 - {x^2}} \over {\left( {2x + 3} \right)\left( {x - 3} \right)}}\)\(\displaystyle  = {x \over {x - 3}} - {{3\left( {2x + 3} \right)} \over {\left( {2x + 3} \right)\left( {x - 3} \right)}}  \)\(\displaystyle   = {x \over {x - 3}} - {3 \over {x - 3}} = {{x - 3} \over {x - 3}} = 1 \)

Vậy giá trị của biểu thức \(\displaystyle {x \over {x - 3}} - {{{x^2} + 3x} \over {2x + 3}}\)\(.\displaystyle \left( {{{x + 3} \over {{x^2} - 3x}} - {x \over {{x^2} - 9}}} \right)\) bằng \(1\) khi \(x \ne 0,\)\(x \ne  - 3,\)\(x \ne 3,\)\(x \ne  - {3 \over 2}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"