Bài 16 trang 81 SBT toán 8 tập 1

2024-09-14 09:04:35

Đề bài

Chứng minh rằng trong hình thang các tia phân giác của hai góc kề một cạnh bên vuông góc với nhau.

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức:

+) Hai góc kề một cạnh bên của hình thang bằng \(180^0.\)

+) Tổng ba góc trong một tam giác bằng \(180^0.\)

Lời giải chi tiết

Giải sử hình thang \(ABCD\) có \(AB// CD\)

Suy ra \(\widehat A + \widehat D = {180^0}\) (hai góc trong cùng phía bù nhau)

Ta có: 

\(\displaystyle  {\widehat A_1} = {\widehat A_2} = {1 \over 2}\widehat A\) (vì AE là tia phân giác của góc A)

\( \displaystyle  {\widehat D_1} = {\widehat D_2} = {1 \over 2}\widehat D \) (vì DE là tia phân giác của góc D)

Suy ra:

\({\widehat A_1} + {\widehat D_1} = \displaystyle {1 \over 2}(\widehat A + \widehat D )\)\(=\displaystyle{1 \over 2}.180^0= {90^0}\)

Trong  \(∆ AED\) ta có :

\(\widehat {AED} + {\widehat A_1} + {\widehat D_1} = {180^0}\) (tổng ba góc trong tam giác)

\( \Rightarrow \widehat {AED} = {180^0} - \left( {{{\widehat A}_1} + {{\widehat D}_1}} \right) \)\(= {180^0} - {90^0} = {90^0}\)

Vậy \(AE ⊥ DE\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"