Bài 15 trang 81 SBT toán 8 tập 1

2024-09-14 09:04:36

Đề bài

Chứng minh rằng trong hình thang có nhiều nhất là hai góc tù, có nhiều nhất là hai góc nhọn.

Phương pháp giải - Xem chi tiết

+) Hai góc kề một cạnh bên của hình thang bằng \(180^0.\)

Lời giải chi tiết

Xét hình thang \(ABCD\) có \(AB// CD\)

\( \widehat A\) và \(\widehat D\) là hai góc kề với cạnh bên.

\( \Rightarrow \widehat A + \widehat D = {180^0}\) (\(2\) góc trong cùng phía ) nên trong hai góc đó có nhiều nhất \(1\) góc nhọn và có nhiều nhất là \(1\) góc tù.

\(\widehat B\) và \(\widehat C\) là hai góc kề với cạnh bên

\( \Rightarrow \widehat B + \widehat C = {180^0}\) (\(2\) góc trong cùng phía) nên trong hai góc đó có nhiều nhất \(1\) góc nhọn và có nhiều nhất \(1\) góc tù.

Vậy trong bốn góc là : \(\widehat A,\widehat B,\widehat C,\widehat D\) có nhiều nhất là hai góc nhọn và nhiều nhất là hai góc tù.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"