Bài 3.3 phần bài tập bổ sung trang 84 SBT toán 8 tập 1

2024-09-14 09:04:39

Đề bài

Hình thang cân \(ABCD\) \((AB // CD)\) có \(\widehat C=60^0,\) \(DB\) là tia phân giác của góc \(D.\) Tính các cạnh của hình thang, biết chu vi hình thang bằng \(20cm.\)

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức:

+) Trong hình thang cân, hai cạnh bên bằng nhau.

+) Nếu một hình thang có hai cạnh bên song song thì hai cạnh bên bằng nhau, hai cạnh đáy bằng nhau.

+) Tam giác có hai góc \(60^0\) thì tam giác đó là tam giác đều.

Lời giải chi tiết

Hình thang \(ABCD\) cân có \(AB // CD\)

\( \Rightarrow \widehat D = \widehat C = {60^0}\)

\(DB\) là tia phân giác của góc \(D\)

\( \Rightarrow \widehat {D_1} = \widehat {D_2}=\dfrac{1}{2}\widehat D=30^0\)

Mà \(AB//CD\) nên \(\widehat {B_1} = \widehat {D_2}\) (hai góc so le trong)

Suy ra: \(\widehat {D_1} = \widehat {B_1}\)  

\(⇒ ∆ ABD\) cân tại \(A\)  \(⇒ AB = AD\;\;\; (1)\)

Từ \(B\) kẻ đường thẳng song song với \(AD\) cắt \(CD\) tại \(E\)

Hình thang \(ABED\) (do \(AB//DE)\) có hai cạnh bên song song nên \(AB = ED,\) \(AD= BE\)   \((2)\)

Lại có \(AB//CD\) nên \(\widehat {BEC} = \widehat {ADC}=60^0\) (hai góc đồng vị )

Suy ra:  \(\widehat {BEC} = \widehat C = {60^0}\)

\(⇒∆ BEC\) đều \(⇒ EC = BC    \;\;\;(3)\)

Vì ABCD là hình thang cân nên \(AD = BC\) (tính chất) \((4)\)

Từ \((1),\) \((2),\) \((3)\) và \((4)\) \(⇒ AB = BC = AD = ED = EC\)

 Chu vi hình thang \(ABCD\) bằng:

\(AB + BC + CD + AD \)\(= AB + BC + EC +ED +AD\)\( = 5AB\)

\(⇒AB = BC = AD = 20:5 = 4\;(cm)\)

\(CD = CE + DE = 2 AB \)\(= 2.4 = 8 \;\;(cm)\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"