Bài 30 trang 83 SBT toán 8 tập 1

2024-09-14 09:04:43

Cho tam giác \(ABC\) cân tại \(A.\) Lấy điểm \(D\) trên cạnh \(AB,\) điểm \(E\) trên cạnh \(AC\) sao cho \(AD = AE.\)

LG a

\(\) Tứ giác \(BDEC\) là hình gì \(?\) Vì sao \(?\)

Phương pháp giải:

Ta sử dụng kiến thức:

+) Hình thang là tứ giác có hai cạnh đối song song.

+) Hình thang có hai góc kề một đáy bằng nhau là hình thang cân.

Lời giải chi tiết:

Ta có: \(AD = AE \;\;\; (gt)\) 

\(⇒ ∆ ADE\) cân tại \(A\)

\( \Rightarrow \widehat {ADE} = \displaystyle {{{{180}^0} - \widehat A} \over 2}\) 

\(∆ ABC\) cân tại \(A\)

\( \Rightarrow \widehat {ABC} = \displaystyle {{{{180}^0} - \widehat A} \over 2}\) 

Suy ra:  \(\widehat {ADE} = \widehat {ABC}\)

\(⇒ DE // BC\) (vì có cặp góc đồng vị bằng nhau)

Tứ giác \(BDEC\) là hình thang

\(\widehat {ABC} = \widehat {ACB}\) (tính chất tam giác cân)

Hay \(\widehat {DBC} = \widehat {ECB}\). Vậy BDEC là hình thang cân


LG b

\(\) Các điểm \(D,\) \(E\) ở vị trí nào thì \(BD = DE = EC\) \(?\)

Phương pháp giải:

Ta sử dụng kiến thức:

+) Hình thang là tứ giác có hai cạnh đối song song.

+) Hình thang có hai góc kề một đáy bằng nhau là hình thang cân.

Lời giải chi tiết:

\(\) Giả sử: \(BD = DE\) \(⇒ ∆ BDE\) cân tại \(D\)

\( \Rightarrow {\widehat B_1} = {\widehat E_1}\)

Mà \({\widehat E_1} = {\widehat B_2}\) (so le trong)

\( \Rightarrow {\widehat B_1} = {\widehat B_2}\)

\(\Rightarrow BE\) là tia phân giác của \(\widehat {ABC}.\)

Giả sử: \(DE = EC\) \(⇒∆ DEC\) cân tại \(E\)

\( \Rightarrow {\widehat D_1} = {\widehat C_1}\)

\({\widehat D_1} = {\widehat C_2}\) (so le trong)

\( \Rightarrow {\widehat C_1} = {\widehat C_2}\)

\(\Rightarrow CD\) là tia phân giác của \(\widehat {ACB}.\)

Vậy khi \(BE\) là tia phân giác của \(\widehat {ABC}\), \(CD\) là tia phân giác của \(\widehat {ACB}\) thì \(BD = DE = EC.\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"