Bài 28 trang 83 SBT toán 8 tập 1

2024-09-14 09:04:44

Đề bài

Hình thang cân \(ABCD\) có đáy nhỏ \(AB\) bằng cạnh bên \(AD.\) Chứng minh rằng \(CA\) là tia phân giác của góc \(C.\)

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức:

+) Trong hình thang cân, hai cạnh bên bằng nhau.

Lời giải chi tiết

Ta có: 

\(AB = AD \;\;\;(gt)\)

\(AD = BC\) (tính chất hình thang cân)

\(⇒ AB = BC\) do đó \(∆ ABC\) cân tại \(B\)

\(\Rightarrow {\widehat A_1} = {\widehat C_1}\) (1) (tính chất tam giác cân)

Mặt khác, ABCD là hình thang có đáy là AB nên \(AB // CD\;\;\; \)

Suy ra \({\widehat A_1} = {\widehat C_2}\) (2) (hai góc so le trong)

Từ (1) và (2) suy ra \({\widehat C_1} = {\widehat C_2}\) (cùng bằng \(\widehat A_1)\)

Vậy \(CA\) là tia phân giác của \(\widehat {BCD}\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"