Bài 23 trang 82 SBT toán 8 tập 1

2024-09-14 09:04:47

Đề bài

Hình thang cân \(ABCD\) có \(AB // CD,\) \(O\) là giao điểm của hai đường chéo. Chứng minh rằng \(OA=OB,\) \(OC=OD.\)

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức:

+) Hình thâng cân là hình thang có hai góc kề một đáy bằng nhau.

+) Trong hình thang cân, hai cạnh bên bằng nhau.

+) Trong hình thang cân, hai đường chéo bằng nhau.

Lời giải chi tiết

Xét \(∆ ADC\) và \(∆ BCD,\) ta có:

\(AD = BC\) (tính chất hình thang cân)

\(\widehat {ADC} = \widehat {BCD}\) (do ABCD là hình thang cân)

\(DC\) cạnh chung

Do đó: \(∆ ADC = ∆ BCD\;\;\; (c.g.c)\)

\( \Rightarrow {\widehat C_1} = {\widehat D_1}\)

Trong \(∆ OCD\) ta có: \({\widehat C_1} = {\widehat D_1}\)

\(⇒ ∆ OCD\) cân tại \(O\)

\(⇒ OC = OD  \;\;\;\;(1)\)

Do ABCD là hình thang cân nên \(AC = BD\) ( tính chất)

\(⇒ AO + OC = BO + OD \;\;\;(2)\)

Từ \((1)\) và \((2)\) suy ra: \(AO = BO\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"