Đề bài
Vẽ hình đối xứng qua đường thẳng \(d\) của hình đã vẽ \((h.6).\)
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức: Hai hình được gọi là đối xứng với nhau qua đường thẳng \(d\) nếu mỗi điểm thuộc hình này đối xứng với một điểm thuộc hình kia qua đường thẳng \(d\) và ngược lại.
Lời giải chi tiết
Cách vẽ:
+) Hình phía trên:
Gọi tên như hình vẽ dưới đây.
- Kéo dài AB, CD cắt d tại M, Q
- Trên tia AB lấy A', B' sao cho MB' = MB; MA' = MA
- Trên tia CD lấy C', D' sao cho QC' = QC; QD' = QD
- Trên tia EN lấy E' sao cho NE = NE'
- Trên tia FP lấy F' sao cho PF = PF'
Nối các điểm đã dựng ta được hình đối xứng qua d của hình đã cho.
+) Hình phía dưới:
Gọi tên như hình vẽ dưới đây.
- Vẽ A' đối xứng với A qua đường thẳng d, vẽ B' đối xứng với B qua đường thẳng d
- Nối A'B', A'G
- Vẽ E' đối xứng với E qua đường thẳng d, nối E'F
- Vẽ C' đối xứng với C qua đường thẳng d, vẽ D' đối xứng với D qua đường thẳng d
- Nối E'D', C'D', C'B' ta được hình đối xứng với hình đã cho qua d.
[hoctot.me - Trợ lý học tập AI]