Bài 65 trang 87 SBT toán 8 tập 1

2024-09-14 09:05:14

Đề bài

Tứ giác \(ABCD\) có \(AB = BC,\) \(CD = DA\) (hình cái diều). Chứng minh rằng điểm \(A\) đối xứng với điểm \(C\) qua đường thẳng \(BD.\)

Phương pháp giải - Xem chi tiết

+) Sử dụng định nghĩa: Hai điểm gọi là đối xứng với nhau qua đường thẳng \(d\) nếu \(d\) là đường trung trực của đoạn thẳng nối hai điểm đó.

+) Sử dụng tính chất đường trung trực: Điểm cách đều hai đầu mút của một đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó.

Lời giải chi tiết

Ta có: \(BA = BC\;\;\;(gt)\)

Suy ra \(B\) thuộc đường trung trực của \(AC\)

\(DC = DA\;\;\; (gt)\)

Suy ra \(D\) thuộc đường trung trực của \(AC\)

Mà \(B ≠ D\) nên \(BD\) là đường trung trực của \(AC\)

Do đó \(A\) đối xứng với \(C\) qua đường thẳng \(BD.\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"