Bài 118 trang 94 SBT toán 8 tập 1

2024-09-14 09:05:46

Đề bài

Tứ giác \(ABCD\) có \(AB ⊥ CD.\) Gọi \(E,\, F,\, G,\, H\) theo thứ tự là trung điểm của \(BC,\, BD,\, AD,\, AC.\) Chứng minh rằng \(EG = FH.\)

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức:

+) Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác.

+) Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

Lời giải chi tiết

Trong \(∆ BCD\) ta có:

\(E\) là trung điểm của \(BC\) (gt)

\(F\) là trung điểm của \(BD\) (gt)

nên \(EF\) là đường trung bình của \(∆ BCD\)

\(⇒ EF // CD\) và \(EF= \dfrac{1}{2}CD\) (1)

Trong \(∆ ACD\) ta có:

\(H\) là trung điểm của \(AC\) (gt)

\(G\) là trung điểm của \(AD\) (gt)

nên \(HG\) là đường trung bình của \(∆ ACD\)

\(⇒ HG // CD\) và \(HG = \dfrac{1}{2}CD\) (2)

Từ (1) và (2) suy ra: \(EF // HG\) và \(EF = HG\)

Suy ra tứ giác \(EFGH\) là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

Mặt khác: \(EF // CD\) (chứng minh trên)

                \(AB ⊥ CD\) (gt)

Suy ra \(EF ⊥ AB\)

Trong \(∆ ABC\) ta có \(HE\) là đường trung bình (do H là trung điểm của AC và E là trung điểm của BC)

\(⇒ HE // AB\)

Suy ra: \(HE ⊥ EF\) hay \(\widehat {FEH} = {90^0}\)

Vậy hình bình hành \(EFGH\) là hình chữ nhật.

Do đó \(EG=FH\) (tính chất hình chữ nhật).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"