Bài 2.2 phần bài tập bổ sung trang 159 SBT toán 8 tập 1

2024-09-14 09:06:41

LG a

Dùng diện tích để chứng tỏ : \({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\)

Phương pháp giải:

Dựng hình vuông rồi lấy các điểm và đặt độ dài sao cho phù hợp.

Sau đó áp dụng công thức tính diện tích hình chữ nhật : \(S=ab\)

Lời giải chi tiết:

Dựng hình vuông \(ABCD\) có cạnh bằng \((a + b )\)

Trên cạnh \(AB\) dựng điểm \(E\) sao cho \(AE = a,\, EB = b,\) trên cạnh \(BC\) dựng điểm \(H\) sao cho \(BH = b,\, HC = a,\) trên cạnh \(CD\) dựng điểm \(G\) sao cho \(CG = b,\, GD = a,\) trên cạnh \(DA\) dựng điểm \(K\) sao cho \(DK = a,\, KA = b,\) \(GE\) cắt \(KH\) tại \(F.\)

Ta có : diện tích hình vuông \(ABCD\) bằng \({\left( {a + b} \right)^2}\)

Diện tích hình vuông \(DKFG\) bằng \({a^2}\)

Diện tích hình chữ nhật \(AKFE\) bằng \(a.b\)

Diện tích hình vuông \(EBHF\) bằng \({b^2}\)

Diện tích hình chữ nhật \(HCGF\) bằng \(a.b\)

\({S_{ABCD}} = {S_{DKFG}} + {S_{AKFE}}\) \(+ {S_{EBHF}}\) \(+ {S_{HCGF}}\)

Vậy ta có : \({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\)


LG b

Dùng diện tích để chứng tỏ : \({\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\)với điều kiện \(b < a\)

Phương pháp giải:

Dựng hình vuông rồi lấy các điểm và đặt độ dài sao cho phù hợp.

Sau đó áp dụng công thức tính diện tích hình chữ nhật : \(S=ab\)

Lời giải chi tiết:

Dựng hình vuông \(ABCD\) có cạnh bằng \(a\)

Trên cạnh \(AB\) lấy điểm \(E\) sao cho \(BE = b\)

Từ \(E\) dựng đường thẳng song song \(BC\) cắt \(CD\) tại \(G\)

Ta có: \(CG = b,\) \(CE = ( a – b ),\) \(GD = ( a – b )\)

Trên cạnh \(AD\) lấy điểm \(K\) sao cho \(AK = b\)

Từ \(K\) kẻ đường thẳng song song với \(AB\) cắt \(BC\) tại \(H\) và cắt \(EG\) tại \(F\)

Ta có: \(KD = ( a – b ),\) \(BH = b\)

Hình vuông \(ABCD\) có diện tích bằng \({a^2}\)

Hình vuông \(DKFG\) có diện tích bằng \({\left( {a - b} \right)^2}\)

Hình chữ nhật \(AEFK\) có diện tích bằng \(( a – b ). b\)

Hình vuông \(EBHF\) có diện tích bằng \({b^2}\)

Hình chữ nhật \(HCGF\) có diện tích bằng \(( a – b ).b\)

\({S_{ABCD}} = {S_{DKFG}} + {S_{AEFK}}\) \(+ {S_{EBHF}} + {S_{HCGF}}\)

nên \({\left( {a - b} \right)^2} + \left( {a - b} \right)b\) \(+ \left( {a - b} \right)b + {b^2} = {a^2}\)

\(\begin{array}{l}
\Leftrightarrow {\left( {a - b} \right)^2} + ab - {b^2} + ab - {b^2} + {b^2} = {a^2}\\
\Leftrightarrow {\left( {a - b} \right)^2} + 2ab - {b^2} = {a^2}\\
\Leftrightarrow {\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}
\end{array}\)

Vậy \( {\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"