Bài 23 trang 158 SBT toán 8 tập 1

2024-09-14 09:06:43

Đề bài

Trên hình \(185,\) các tứ giác \(ABCD\) và \(EFCH\) đều là hình bình hành. Điểm \(E\) nằm trên đường chéo \(AC.\)

a) Chứng minh rằng đa giác \(AEHD\) và hình \(ABCFE\) có cùng diện tích.

b) \(ABCFE\) có phải là đa giác lồi không? Vì sao?

Phương pháp giải - Xem chi tiết

a) \( {S_{ABC}} = {S_{CDA}}\)

\({S_{EFC}} = {S_{CHE}}\)

\({S_{ABC}} - {S_{EFC}} = {S_{CDA}} - {S_{CHE}}\)

Hay \({S_{ABCFE}} = {S_{AEHD}}\)

b) Định nghĩa: Đa giác lồi là đa giác luôn nằm trong một nửa mặt phẳng mà bờ là đường thẳng chứa bất kì cạnh nào của đa giác đó.

Lời giải chi tiết

a) Xét \(∆ ABC\) và \(∆ CDA\) có:

\(AB=CD\) ( vì \(ABCD\) là hình bình hành)

\(BC=AD\) ( vì \(ABCD\) là hình bình hành)

\(AC\) chung

\(\Rightarrow ∆ ABC = ∆ CDA \,(c.c.c)\)

\( \Rightarrow {S_{ABC}} = {S_{CDA}}\) (1)

Xét \(∆ EFC\) và \(∆ CHE\) có:

\(EF=HC\) (vì \(EFCH\) là hình bình hành)

\(FC=EH\) (vì \(EFCH\) là hình bình hành)

\(EC\) chung

\( \Rightarrow ∆ EFC = ∆ CHE\, (c.c.c)\)

\( \Rightarrow {S_{EFC}} = {S_{CHE}}\) (2)

Từ (1) và (2) suy ra:

\({S_{ABC}} - {S_{EFC}} = {S_{CDA}} - {S_{CHE}}\)

Hay \({S_{ABCFE}} = {S_{AEHD}}\)

 b) Hình \(ABCFE\) không phải đa giác lồi vì nó nằm trên hai nửa mặt phẳng có bờ là đường thẳng chứa cạnh \(CF.\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"