Đề bài
Cho tam giác vuông cân, biết độ dài cạnh huyền là \(l\). Tính diện tích tam giác đó.
Phương pháp giải - Xem chi tiết
Áp dụng định lý Pi-ta-go vào tam giác vuông có cạnh huyền là c và hai cạnh góc vuông a, b, ta có: \(a^2+b^2=c^2\)
Công thức tính diện tích tam giác vuông có 2 cạnh góc vuông a, b là: \(S= \dfrac{1}{2}ab\)
Lời giải chi tiết
Gọi độ dài cạnh góc vuông của tam giác vuông cân là \(a\) (\(0 < a Theo định lý Pi-ta-go vào tam giác vuông, ta có: \({a^2} + {a^2} = {l^2}\) \(\eqalign{ & \Rightarrow 2{a^2} = {l^2} \Rightarrow {a^2} = {{{l^2}} \over 2} \cr & S = {1 \over 2}a.a = {1 \over 2}.{a^2} = {1 \over 2}.{{{l^2}} \over 2} = {1 \over 4}{l^2} \cr} \) Vậy diện tích tam giác là \(S=\dfrac{1}{4}l^2\) [hoctot.me - Trợ lý học tập AI]