Bài 3.2 phần bài tập bổ sung trang 161 SBT toán 8 tập 1

2024-09-14 09:06:53

Đề bài

Cho tam giác đều \(ABC\) và điểm \(M\) bất kì nằm trong tam giác đó. Đường thẳng đi qua điểm \(M\) và vuông góc với \(BC\) tại điểm \(H.\) Đường thẳng đi qua điểm \(M\) và vuông góc với \(CA\) tại điểm \(K.\) Đường thẳng đi qua điểm \(M\) và vuông góc với \(AB\) tại điểm \(T.\)

Chứng minh rằng \(MH+MK+MT\) không phụ thuộc vào vị trí của điểm \(M.\)

Phương pháp giải - Xem chi tiết

Gợi ý: Tổng diện tích của tam giác \(MBC,\,MCA,\,MAB\) bằng diện tích của tam giác \(ABC\)

Lời giải chi tiết

Giả sử \(∆ ABC\) đều có cạnh bằng \(a,\) kẻ đường cao \(AD,\) đặt \(AD = h\) không đổi.

Ta có:

\(\begin{array}{l}{S_{ABC}} = \dfrac{1}{2}ah\\{S_{MAB}} = \dfrac{1}{2}MT.a\\{S_{MAC}} = \dfrac{1}{2}MK.a\\{S_{MBC}} = \dfrac{1}{2}MH.a\\{S_{ABC}} = {S_{MAB}} + {S_{MAC}} + {S_{MBC}}\\\dfrac{1}{2}ah = \dfrac{1}{2}MT.a + \dfrac{1}{2}MK.a \\+ \dfrac{1}{2}MH.a\\\dfrac{1}{2}ah = \dfrac{1}{2}a(MT + MK + MH)\\ \Rightarrow MT + MK + MH = h\end{array}\) 

\( \Rightarrow MT + MK + MH = h\) không đổi

Vậy tổng \(MT + MK + MH\) không phụ thuộc vào điểm \(M.\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"